Lozano-López Alberto, Cano-González Mario E, Ventura-Juárez J, Muñoz-Ortega Martín H, Betancourt Israel, Zapien Juan Antonio, Medina-Ramirez Iliana E
Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad #940, Aguascalientes C.P. 20100, Aguascalientes, Mexico.
Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad #1115, Col. Linda Vista, Ocotlán C.P 47810, Jalisco, Mexico.
Int J Mol Sci. 2025 Aug 10;26(16):7732. doi: 10.3390/ijms26167732.
We investigated the influence of gold deposition on the magnetic behavior, biocompatibility, and bioactivity of CoFeO (MCF) nanomaterials (NMs) functionalized with sodium citrate (Cit) or glycine (Gly). The resulting multifunctional plasmonic nanostructured materials (MCF-Au-L, where L is Cit, Gly) exhibit superparamagnetic behavior with magnetic saturation of 59 emu/g, 55 emu/g, and 60 emu/g, and blocking temperatures of 259 K, 311 K, and 322 K for pristine MCF, MCF-Au-Gly, and MCF-Au-Cit, respectively. The MCF NMs exhibit a small uniform size (with a mean size of 7.1 nm) and an atomic ratio of Fe:Co (2:1). The gold nanoparticles (AuNPs) show high heterogeneity as determined by high-resolution transmission electron microscopy (HR-TEM) and energy-dispersive X-ray spectroscopy (EDX). The UV-Vis spectroscopy of the composites reveals two localized surface plasmons (LSPs) at 530 nm and 705 nm, while Fourier Transformed-Infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA) confirm the presence of Cit and Gly on their surface. Subsequent biocompatibility tests confirm that MCF-Au-L NMs do not exert hemolytic activity (hemolysis < 5%). In addition, the CCK-8 viability assay tests indicate the higher sensitivity of cancerous cells (A549) to the photoactivity of MCF-Au compared to healthy Detroit 548 (D548) cell lines. We use advanced microscopy techniques, namely atomic force, fluorescence, and holotomography microscopies (AFM, FM, and HTM, respectively) to provide further insights into the nature of the observed photoactivity of MCF-Au-L NMs. In addition, in situ radiation, using a modified HTM microscope with an IR laser accessory, demonstrates the photoactivity of the MCF-Au NMs and their suitability for destroying cancerous cells through photodynamic therapy. The combined imaging capabilities demonstrate clear morphological changes, NMs internalization, and oxidative damage. Our results confirm that the fabricated multifunctional NMs exhibit high stability in aqueous solution, chemical solidity, superparamagnetic behavior, and effective IR responses, making them promising precursors for hybrid cancer therapy.
我们研究了金沉积对用柠檬酸钠(Cit)或甘氨酸(Gly)功能化的CoFeO(MCF)纳米材料(NMs)的磁行为、生物相容性和生物活性的影响。所得的多功能等离子体纳米结构材料(MCF-Au-L,其中L为Cit、Gly)表现出超顺磁行为,原始MCF、MCF-Au-Gly和MCF-Au-Cit的磁饱和分别为59 emu/g、55 emu/g和60 emu/g,阻塞温度分别为259 K、311 K和322 K。MCF纳米材料尺寸均匀且较小(平均尺寸为7.1 nm),Fe:Co原子比为2:1。通过高分辨率透射电子显微镜(HR-TEM)和能量色散X射线光谱(EDX)测定,金纳米颗粒(AuNPs)表现出高度的不均匀性。复合材料的紫外-可见光谱显示在530 nm和705 nm处有两个局域表面等离子体(LSPs),而傅里叶变换红外光谱(FTIR)和热重分析(TGA)证实其表面存在Cit和Gly。随后的生物相容性测试证实MCF-Au-L纳米材料不具有溶血活性(溶血率<5%)。此外,CCK-8活力测定试验表明,与健康的底特律548(D548)细胞系相比,癌细胞(A549)对MCF-Au的光活性更敏感。我们使用先进的显微镜技术,即原子力显微镜、荧光显微镜和全息断层显微镜(分别为AFM、FM和HTM),以进一步深入了解所观察到的MCF-Au-L纳米材料光活性的本质。此外,使用配备红外激光附件的改良HTM显微镜进行原位辐射,证明了MCF-Au纳米材料的光活性及其通过光动力疗法破坏癌细胞的适用性。综合成像能力显示出明显的形态变化、纳米材料内化和氧化损伤。我们的结果证实,所制备的多功能纳米材料在水溶液中表现出高稳定性、化学稳定性、超顺磁行为和有效的红外响应,使其成为混合癌症治疗中有前景的前体。