Hu Yanan, Yao Yong, Zhang Lingling, Hu Xianming, Yang Xinchun
School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, China.
Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province, Mianyang 621010, China.
Materials (Basel). 2025 Aug 14;18(16):3815. doi: 10.3390/ma18163815.
This study addresses the low reactivity and poor toughness of diabase tailings (DT), a high-silica industrial byproduct, which restricts their large-scale application in geopolymer binders. To overcome these limitations, a dual-regulation strategy integrating stepwise low-temperature thermal activation (100, 200, and 300 °C) with standard curing (20 ± 2 °C, 95% RH) was developed. This approach aimed to enhance mineral dissolution kinetics and facilitate the formation of a dense, interconnected gel network. XRD, FTIR, and SEM analyses revealed significant decomposition of amphibole, pyroxene, and olivine, accompanied by increased release of reactive Si and Al species, leading to the formation of a compact N-A-S-H/C-A-S-H gel structure. Under optimized conditions (Si/Al = 2.6; activator modulus = 1.2), the geopolymer achieved a 7-day compressive strength of 42.3 ± 1.8 MPa, a flexural strength of 12.76 ± 1.6 MPa, and a flexural-to-compressive strength ratio of 0.308, demonstrating significant improvements in toughness compared with conventional binders. This green, energy-efficient strategy not only reduces energy consumption and CO emissions but also provides a technically feasible pathway for the high-value reuse of silicate-rich mining wastes, contributing to the development of sustainable construction materials with enhanced mechanical performance.
本研究针对辉绿岩尾矿(DT)这种高硅工业副产品反应活性低和韧性差的问题,这限制了它们在地质聚合物粘结剂中的大规模应用。为克服这些限制,开发了一种双调控策略,即将逐步低温热活化(100、200和300°C)与标准养护(20±2°C,95%相对湿度)相结合。该方法旨在提高矿物溶解动力学,并促进形成致密、相互连接的凝胶网络。X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和扫描电子显微镜(SEM)分析表明,角闪石、辉石和橄榄石发生了显著分解,同时活性硅和铝物种的释放增加,导致形成致密的N-A-S-H/C-A-S-H凝胶结构。在优化条件下(硅/铝=2.6;活化剂模量=1.2),地质聚合物的7天抗压强度达到42.3±1.8MPa,抗折强度为12.76±1.6MPa,抗折与抗压强度比为0.308,与传统粘结剂相比,韧性有显著提高。这种绿色、节能的策略不仅降低了能源消耗和二氧化碳排放,还为富含硅酸盐的采矿废料的高价值再利用提供了一条技术上可行的途径,有助于开发具有增强机械性能的可持续建筑材料。