Suppr超能文献

甲状腺结节特征分析:哪种甲状腺影像报告和数据系统(TIRADS)更准确?不同经验的放射科医生与人工智能软件的比较。

Thyroid Nodule Characterization: Which Thyroid Imaging Reporting and Data System (TIRADS) Is More Accurate? A Comparison Between Radiologists with Different Experiences and Artificial Intelligence Software.

作者信息

David Emanuele, Aliotta Lorenzo, Frezza Fabrizio, Riccio Marianna, Cannavale Alessandro, Pacini Patrizia, Di Bella Chiara, Dolcetti Vincenzo, Seri Elena, Giuliani Luca, Di Segni Mattia, Lo Conte Gianmarco, Bonito Giacomo, Guerrisi Antonino, Mangini Fabio, Drudi Francesco Maria, De Vito Corrado, Cantisani Vito

机构信息

Department of Medical Surgical Sciences and Advanced Technologies "GF Ingrassia", University Hospital Policlinic "G. Rodolico-San Marco", 95123 Catania, Italy.

Department of Information Engineering, Electronics and Telecommunications, "Sapienza" University of Rome, 00184 Rome, Italy.

出版信息

Diagnostics (Basel). 2025 Aug 21;15(16):2108. doi: 10.3390/diagnostics15162108.

Abstract

This study aimed to compare: the performance of K-TIRADS, EU-TIRADS and ACR TIRADS when used by observers with different levels of experience compared with the gold standard of cytology, and to evaluate the diagnostic performance of CAD (computer-aided design) compared with TI-RADS systems. In total, 323 thyroid nodules were evaluated in patients who were candidates for needle aspiration. Three observers with different levels of experience evaluated the diagnostic accuracy of three risk stratification systems (ACR TI-RADS, EU-TIRADS and K-TIRADS) and CAD software (S-Detect, made by Samsung) in characterizing the nodules. The results were compared with cytology examination. All nodules were characterized in terms of shape, margins, composition, calcifications, size, echogenicity and microcalcifications, and by stratifying individual nodules by using the three TIRADS systems; then S-detect software was applied and the data were compared with each other and with the gold standard. Through cytology, 308 benign and 33 malignant nodules were identified. ACR-TIRADS showed a sensitivity of 100%, a specificity of 86%, a positive predictive value of 43% and a negative predictive value of 100%. EU-TIRADS showed a sensitivity of 100%, a specificity of 79%, a positive predictive value of 33% and a negative predictive value of 100%. K-TIRADS showed a sensitivity of 100%, a specificity of 89%, a positive predictive value of 50% and a negative predictive value of 100%. S-Detect combined with EU-TIRADS showed a high agreement (>95%) with the gold standard. K-TIRADS's positive predictive power was slightly better than the other TIRADS, suggesting greater accuracy in correctly diagnosing positive cases. S-DETECT combined with EU-TIRADS has similar results to S-Detect with ACR- and K-TIRADS in terms of sensitivity, specificity and negative predictive power. However, it has a slightly better positive predictive power, suggesting greater accuracy in correctly diagnosing positive cases than the ACR- and K-TIRADS classification systems. In general, S-Detect cannot yet be considered a substitute for the human observer but only as an important support for human evaluation and an excellent and fast help to provide a comprehensive and complete report. S-Detect is a valuable tool for characterizing thyroid nodules when integrated with radiologist evaluation. It is also an important support tool for less experienced observers. Particularly interesting is the approach of use in integrated combination of the K-TIRADS by the human observer with S-Detect using EU-TIRADS, which could increase the overall diagnostic efficiency of the systems.

摘要

本研究旨在比较

不同经验水平的观察者使用K-TIRADS、欧盟-TIRADS和美国放射学会(ACR)TIRADS时的表现,并与细胞学金标准进行对比;同时评估计算机辅助诊断(CAD)与TI-RADS系统相比的诊断性能。共有323个甲状腺结节在拟行针吸活检的患者中进行了评估。三名经验水平不同的观察者评估了三种风险分层系统(ACR TIRADS、欧盟-TIRADS和K-TIRADS)以及CAD软件(三星公司的S-Detect)在结节特征描述方面的诊断准确性。结果与细胞学检查进行了比较。所有结节均根据形状、边界、成分、钙化、大小、回声性和微钙化进行特征描述,并使用三种TIRADS系统对单个结节进行分层;然后应用S-detect软件,并将数据相互比较以及与金标准进行比较。通过细胞学检查,共识别出308个良性结节和33个恶性结节。ACR-TIRADS的敏感性为100%,特异性为86%,阳性预测值为43%,阴性预测值为100%。欧盟-TIRADS的敏感性为100%,特异性为79%,阳性预测值为33%,阴性预测值为100%。K-TIRADS的敏感性为100%,特异性为89%,阳性预测值为50%,阴性预测值为100%。S-Detect与欧盟-TIRADS联合使用时与金标准具有高度一致性(>95%)。K-TIRADS的阳性预测能力略优于其他TIRADS,表明在正确诊断阳性病例方面具有更高的准确性。S-DETECT与欧盟-TIRADS联合使用在敏感性、特异性和阴性预测能力方面与S-Detect与ACR-和K-TIRADS联合使用的结果相似。然而,其阳性预测能力略强,表明在正确诊断阳性病例方面比ACR-和K-TIRADS分类系统具有更高的准确性。总体而言,S-Detect目前尚不能被视为人类观察者的替代品,而只能作为人类评估的重要支持以及提供全面完整报告的出色且快速的辅助手段。当与放射科医生的评估相结合时,S-Detect是一种用于描述甲状腺结节特征的有价值工具。它也是经验不足的观察者的重要支持工具。特别值得关注的是人类观察者将K-TIRADS与使用欧盟-TIRADS的S-Detect进行综合结合的使用方法,这可能会提高系统的整体诊断效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dee4/12385784/d647de4c50d4/diagnostics-15-02108-g001a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验