Han Hao-Tong, Zhu Han-Sheng, Zhang Jin-Tao, Tan Xin-Yun, Wu Yan-Xin, Liu Chang, Liu Xin-Yu, Ye Meng-Qi
Marine College, Shandong University, Weihai 264209, China.
Shenzhen Research Institute, Shandong University, Shenzhen 518057, China.
Microorganisms. 2025 Aug 7;13(8):1839. doi: 10.3390/microorganisms13081839.
Heavy metal pollution, particularly copper contamination, threatens the ecological environment and human survival. In response to this pressing environmental issue, the development of innovative remediation strategies has become imperative. Bioremediation technology is characterized by remarkable advantages, including its ecological friendliness, cost-effectiveness, and operational efficiency. In our previous research, sp. ZC255 demonstrated substantial potential for environmental bioremediation applications. This study investigated the removal characteristics and underlying mechanism of strain ZC255 and revealed that the maximum removal capacity was 253.4 mg/g biomass under the optimal conditions (pH 7.0, 28 °C, and 2% inoculum). The assessment of the biosorption process followed pseudo-second-order kinetics, while the adsorption isotherm may fit well with both the Langmuir and Freundlich models. Cell surface alterations on the Cu(II)-treated biomass were observed through scanning electron microscopy (SEM). Cu(II) binding functional groups were determined via Fourier transform infrared spectroscopy (FTIR) analysis. Simultaneously, the genomic analysis of strain ZC255 identified multiple genes potentially involved in heavy metal resistance, transport, and metabolic processes. These studies highlight the significance of strain ZC255 in the context of environmental heavy metal bioremediation research and provide a basis for using strain ZC255 as a copper removal biosorbent.
重金属污染,尤其是铜污染,威胁着生态环境和人类生存。针对这一紧迫的环境问题,开发创新的修复策略已势在必行。生物修复技术具有显著优势,包括生态友好、成本效益高和运行效率高。在我们之前的研究中,sp. ZC255在环境生物修复应用中显示出巨大潜力。本研究调查了菌株ZC255的去除特性及潜在机制,结果表明在最佳条件(pH 7.0、28 °C和2%接种量)下,最大去除能力为253.4 mg/g生物量。生物吸附过程的评估遵循准二级动力学,而吸附等温线可能与Langmuir和Freundlich模型都拟合良好。通过扫描电子显微镜(SEM)观察了经Cu(II)处理的生物量的细胞表面变化。通过傅里叶变换红外光谱(FTIR)分析确定了Cu(II)结合官能团。同时,对菌株ZC255的基因组分析确定了多个可能参与重金属抗性、转运和代谢过程的基因。这些研究突出了菌株ZC255在环境重金属生物修复研究中的重要性,并为将菌株ZC255用作除铜生物吸附剂提供了依据。