Gu Jian, Sun Hao, Zhou Xu, Liu Yongqi, Zhou Mingwei, Ma Ningning, Yin Guanghua, Sun Shijun
Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
Microorganisms. 2025 Aug 14;13(8):1897. doi: 10.3390/microorganisms13081897.
Global agricultural intensification has exacerbated soil compaction and nitrogen (N) inefficiency, thereby threatening sustainable crop production. Sub-soiling, a tillage technique that fractures subsurface layers while preserving surface structure, offers potential solutions by modifying soil physical properties and enhancing microbial-mediated N cycling. This study investigated the effects of subsoiling depth (0, 20, and 40 cm) on soil microbial communities and N transformations in a semi-arid maize system in China. The results demonstrated that subsoiling to a depth of 40 cm (D2) significantly enhanced the retention of nitrate-N and ammonium-N, which correlated with improved soil porosity and microbial activity. High-throughput 16S rDNA sequencing revealed subsoiling depth-driven reorganization of microbial communities, with D2 increasing the abundance of Proteobacteria (+11%) and ammonia-oxidizing archaea (Nitrososphaeraceae, +19.9%) while suppressing denitrifiers (nosZ gene: -41.4%). Co-occurrence networks indicated greater complexity in microbial interactions under subsoiling, driven by altered aeration and carbon redistribution. Functional gene analysis highlighted a shift from denitrification to nitrification-mineralization coupling, with D2 boosting maize yield by 9.8%. These findings elucidate how subsoiling depth modulates microbiome assembly to enhance N retention, providing a mechanistic basis for optimizing tillage practices in semi-arid agroecosystems.
全球农业集约化加剧了土壤压实和氮素利用效率低下的问题,从而威胁到作物的可持续生产。深松是一种在保持表层结构的同时破碎下层土壤的耕作技术,通过改变土壤物理性质和增强微生物介导的氮循环提供了潜在的解决方案。本研究调查了在中国半干旱玉米系统中深松深度(0、20和40厘米)对土壤微生物群落和氮转化的影响。结果表明,深松至40厘米深度(D2)显著提高了硝态氮和铵态氮的保留量,这与土壤孔隙度和微生物活性的改善相关。高通量16S rDNA测序揭示了深松深度驱动的微生物群落重组,D2增加了变形菌门(+11%)和氨氧化古菌(亚硝化球菌科,+19.9%)的丰度,同时抑制了反硝化菌(nosZ基因:-41.4%)。共现网络表明,深松条件下微生物相互作用的复杂性更高,这是由通气和碳再分配的改变驱动的。功能基因分析突出了从反硝化到硝化-矿化耦合的转变,D2使玉米产量提高了9.8%。这些发现阐明了深松深度如何调节微生物群落组装以增强氮保留,为优化半干旱农业生态系统中的耕作实践提供了机制基础。