Davies Joe, Zarei Ali, Duun-Henriksen Jonas, Viana Pedro, Beniczky Sándor, Richardson Mark P
Basic and Clinical Neuroscience, King's College London, London SE1 7EH, UK.
UNEEG Medical A/S, 3450 Allerod, Denmark.
Sensors (Basel). 2025 Aug 9;25(16):4932. doi: 10.3390/s25164932.
This study investigates the feasibility of using a two-channel subcutaneous EEG device (SubQ) to detect and monitor PGES. The SubQ device, developed by UNEEG Medical A/S, offers a minimally invasive alternative to scalp EEG, enabling ultra-long-term monitoring and remote data analysis. We used annotated scalp EEG data and data from the SubQ device. The pre-processing pipeline included channel reduction, resampling, filtering, and feature extraction. A Variational Auto-Encoder (VAE) was employed for anomaly detection, trained to identify PGES instances, and post-processing was applied to predict their duration. The VAE achieved a 100% detection rate for PGES in both scalp and SubQ datasets. However, the predicted durations had an average offset of 35.67 s for scalp EEG and 26.42 s for SubQ data. The model's false positive rate (FPR) was 59% for scalp EEG and 56% for SubQ data, indicating a need for further refinement to reduce false alarms. This study demonstrates the potential of subcutaneous EEG as a valuable tool in the study of epilepsy and the monitoring of PGES, ultimately contributing to a better understanding and management of SUDEP risk.
本研究调查了使用双通道皮下脑电图设备(SubQ)检测和监测阵发性广泛性癫痫样放电(PGES)的可行性。由UNEEG Medical A/S公司开发的SubQ设备为头皮脑电图提供了一种微创替代方案,能够进行超长期监测和远程数据分析。我们使用了带注释的头皮脑电图数据和来自SubQ设备的数据。预处理流程包括通道缩减、重采样、滤波和特征提取。采用变分自编码器(VAE)进行异常检测,训练其识别PGES实例,并应用后处理来预测其持续时间。VAE在头皮和SubQ数据集中对PGES的检测率均达到100%。然而,对于头皮脑电图,预测持续时间的平均偏移为35.67秒,对于SubQ数据为26.42秒。该模型的误报率(FPR)在头皮脑电图中为59%,在SubQ数据中为56%,这表明需要进一步优化以减少误报。本研究证明了皮下脑电图作为癫痫研究和PGES监测中有价值工具的潜力,最终有助于更好地理解和管理癫痫性猝死(SUDEP)风险。