Suppr超能文献

发作后广泛性脑电图抑制的检测:随机森林方法。

Detection of Postictal Generalized Electroencephalogram Suppression: Random Forest Approach.

作者信息

Li Xiaojin, Tao Shiqiang, Jamal-Omidi Shirin, Huang Yan, Lhatoo Samden D, Zhang Guo-Qiang, Cui Licong

机构信息

Department of Neurology, University of Texas Health Science Center, Houston, TX, United States.

Department of Computer Science, University of Kentucky, Lexington, KY, United States.

出版信息

JMIR Med Inform. 2020 Feb 14;8(2):e17061. doi: 10.2196/17061.

Abstract

BACKGROUND

Sudden unexpected death in epilepsy (SUDEP) is second only to stroke in neurological events resulting in years of potential life lost. Postictal generalized electroencephalogram (EEG) suppression (PGES) is a period of suppressed brain activity often occurring after generalized tonic-clonic seizure, a most significant risk factor for SUDEP. Therefore, PGES has been considered as a potential biomarker for SUDEP risk. Automatic PGES detection tools can address the limitations of labor-intensive, and sometimes inconsistent, visual analysis. A successful approach to automatic PGES detection must overcome computational challenges involved in the detection of subtle amplitude changes in EEG recordings, which may contain physiological and acquisition artifacts.

OBJECTIVE

This study aimed to present a random forest approach for automatic PGES detection using multichannel human EEG recordings acquired in epilepsy monitoring units.

METHODS

We used a combination of temporal, frequency, wavelet, and interchannel correlation features derived from EEG signals to train a random forest classifier. We also constructed and applied confidence-based correction rules based on PGES state changes. Motivated by practical utility, we introduced a new, time distance-based evaluation method for assessing the performance of PGES detection algorithms.

RESULTS

The time distance-based evaluation showed that our approach achieved a 5-second tolerance-based positive prediction rate of 0.95 for artifact-free signals. For signals with different artifact levels, our prediction rates varied from 0.68 to 0.81.

CONCLUSIONS

We introduced a feature-based, random forest approach for automatic PGES detection using multichannel EEG recordings. Our approach achieved increasingly better time distance-based performance with reduced signal artifact levels. Further study is needed for PGES detection algorithms to perform well irrespective of the levels of signal artifacts.

摘要

背景

癫痫性猝死(SUDEP)在导致潜在生命损失年数的神经系统事件中仅次于中风。发作后全身脑电图(EEG)抑制(PGES)是一种脑活动抑制期,常发生在全身强直阵挛发作之后,是SUDEP的一个极其重要的危险因素。因此,PGES被认为是SUDEP风险的一个潜在生物标志物。自动PGES检测工具可以解决人工分析劳动强度大且有时不一致的局限性。一种成功的自动PGES检测方法必须克服EEG记录中细微幅度变化检测所涉及的计算挑战,这些记录可能包含生理和采集伪迹。

目的

本研究旨在提出一种随机森林方法,用于使用癫痫监测单元采集的多通道人类EEG记录自动检测PGES。

方法

我们使用从EEG信号中提取的时间、频率、小波和通道间相关性特征的组合来训练随机森林分类器。我们还基于PGES状态变化构建并应用了基于置信度的校正规则。出于实际应用的考虑,我们引入了一种新的基于时间距离的评估方法,用于评估PGES检测算法的性能。

结果

基于时间距离的评估表明,对于无伪迹信号,我们的方法实现了基于5秒容差的阳性预测率为0.95。对于具有不同伪迹水平的信号,我们的预测率在0.68至0.81之间变化。

结论

我们引入了一种基于特征的随机森林方法,用于使用多通道EEG记录自动检测PGES。我们的方法在降低信号伪迹水平的情况下,基于时间距离的性能越来越好。无论信号伪迹水平如何,PGES检测算法都需要进一步研究以实现良好性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ef2d/7055778/0388e33fb222/medinform_v8i2e17061_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验