Suppr超能文献

用于自动驾驶系统异常检测的集成学习框架

Ensemble Learning Framework for Anomaly Detection in Autonomous Driving Systems.

作者信息

Nazat Sazid, Alayed Walaa, Li Lingxi, Abdallah Mustafa

机构信息

Elmore Family School of Electrical and Computer Engineering, Purdue University in Indianpolis, Indianapolis, IN 46202, USA.

Department of Information Technology, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia.

出版信息

Sensors (Basel). 2025 Aug 17;25(16):5105. doi: 10.3390/s25165105.

Abstract

The inherent limitations of individual AI models underscore the need for robust anomaly detection techniques for securing autonomous driving systems. To address these limitations, we propose a comprehensive ensemble learning framework specifically designed for anomaly detection in autonomous driving systems. We comprehensively assess the effectiveness of ensemble learning models for detecting anomalies in autonomous vehicle datasets, focusing primarily on the VeReMi and Sensor datasets. Ensemble techniques are rigorously evaluated against individual models on binary and multiclass classification tasks. The analysis reveals that ensemble models consistently outperform individual models in terms of accuracy, precision, recall, false positive rates, and F1-score. On the VeReMi dataset, ensembles achieve high performance for binary classification, with a maximum accuracy of 0.80 and F1-score of 0.86, surpassing single models. For the Sensor dataset, ensemble models like CatBoost exhibit perfect accuracy, precision, recall, and F1-score, exceeding single models by 11% in accuracy. In VeReMi multiclass classification, Stacking and Blending gave a 5% increase in accuracy compared to single models. Moreover, XGBoost and CatBoost demonstrate perfect recall. Our proposed method enhanced performance despite the increased runtime required by ensemble models. In evaluating false positive rates, ensemble learning demonstrated significant gains, reducing false positives and thereby enhancing overall system reliability.

摘要

单个人工智能模型的固有局限性凸显了采用强大的异常检测技术来保障自动驾驶系统安全的必要性。为解决这些局限性,我们提出了一个专门为自动驾驶系统中的异常检测设计的综合集成学习框架。我们全面评估了集成学习模型在自动驾驶车辆数据集中检测异常的有效性,主要聚焦于VeReMi和传感器数据集。在二分类和多分类任务中,将集成技术与单个模型进行了严格对比评估。分析表明,在准确率、精确率、召回率、误报率和F1分数方面,集成模型始终优于单个模型。在VeReMi数据集上,集成模型在二分类中表现出色,最高准确率达0.80,F1分数达0.86,超过了单个模型。对于传感器数据集,像CatBoost这样的集成模型展现出完美的准确率、精确率、召回率和F1分数,准确率比单个模型高出11%。在VeReMi多分类中,Stacking和Blending的准确率相比单个模型提高了5%。此外,XGBoost和CatBoost展现出完美的召回率。尽管集成模型运行时间增加,但我们提出的方法仍提高了性能。在评估误报率时,集成学习取得了显著成效,减少了误报,从而提高了整体系统的可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8941/12389909/16a04d4bcfc9/sensors-25-05105-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验