Suppr超能文献

基于摩擦纳米发电机传感器的手势安全认证系统

Gesture-Based Secure Authentication System Using Triboelectric Nanogenerator Sensors.

作者信息

Han Doohyun, Kim Kun, Shin Jaehee, Park Jinhyoung

机构信息

School of Mechatronics Engineering, Korea University of Technology & Education, Cheonan-si 31253, Republic of Korea.

Department of Energy Engineering, Dankook University, Cheonan-si 31116, Republic of Korea.

出版信息

Sensors (Basel). 2025 Aug 20;25(16):5170. doi: 10.3390/s25165170.

Abstract

This study presents a gesture-based authentication system utilizing triboelectric nanogenerator (TENG) sensors. As self-powered devices capable of generating high-voltage outputs without external power, TENG sensors are well-suited for low-power IoT sensors and smart device applications. The proposed system recognizes single tap, double tap, and holding gestures. The electrical characteristics of the sensor were evaluated under varying pressure conditions, confirming a linear relationship between applied force and output voltage. These results demonstrate the sensor's high sensitivity and precision. A threshold-based classification algorithm was developed by analyzing signal features enabling accurate gesture recognition in real time. To enhance the practicality and scalability of the system, the algorithm was further configured to automatically segment raw sensor signals into gesture intervals and assign corresponding labels. From these segments, time-domain statistical features were extracted to construct a training dataset. A random forest classifier trained on this dataset achieved a high classification accuracy of 98.15% using five-fold cross-validation. The system reduces security risks commonly associated with traditional keypad input, offering a user-friendly and reliable authentication interface. This work confirms the feasibility of TENG-based gesture recognition for smart locks, IoT authentication devices, and wearable electronics, with future improvements expected through AI-based signal processing and multi-sensor integration.

摘要

本研究提出了一种利用摩擦纳米发电机(TENG)传感器的基于手势的认证系统。作为能够在无外部电源情况下产生高电压输出的自供电设备,TENG传感器非常适合低功耗物联网传感器和智能设备应用。所提出的系统能够识别单次点击、双击和长按手势。在不同压力条件下对传感器的电气特性进行了评估,证实了施加力与输出电压之间的线性关系。这些结果证明了传感器的高灵敏度和高精度。通过分析信号特征开发了一种基于阈值的分类算法,能够实时准确地识别手势。为了提高系统的实用性和可扩展性,该算法进一步配置为自动将原始传感器信号分割为手势区间并分配相应的标签。从这些区间中提取时域统计特征以构建训练数据集。使用五折交叉验证在该数据集上训练的随机森林分类器实现了98.15%的高分类准确率。该系统降低了与传统键盘输入相关的安全风险,提供了一个用户友好且可靠的认证界面。这项工作证实了基于TENG的手势识别在智能锁、物联网认证设备和可穿戴电子产品中的可行性,预计未来通过基于人工智能的信号处理和多传感器集成会有进一步改进。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验