Shi Chenbo, Zhang Xiangyu, Wang Delin, Zhu Changsheng, Liu Aiping, Zhang Chun, Feng Xiaobing
College of lntelligent Equipment, Shandong University of Science and Technology, Taian 271019, China.
Beijing Botsing Technology Co., Ltd., Beijing 100176, China.
Sensors (Basel). 2025 Aug 21;25(16):5192. doi: 10.3390/s25165192.
Feature tracking is essential for welding crawler robots' trajectory planning. As welding often occurs in dark environments like pipelines or ship hulls, the system requires low-light image capture for laser tracking. However, such images typically have poor brightness and contrast, degrading both weld seam feature extraction and trajectory anomaly detection accuracy. To address this, we propose a Retinex-based low-light enhancement network tailored for cladding scenarios. The network features an illumination curve estimation module and requires no paired or unpaired reference images during training, alleviating the need for cladding-specific datasets. It adaptively adjusts brightness, restores image details, and effectively suppresses noise. Extensive experiments on public (LOLv1 and LOLv2) and self-collected weld datasets show that our method outperformed existing approaches in PSNR, SSIM, and LPIPS. Additionally, weld seam segmentation under low-light conditions achieved 95.1% IoU and 98.9% accuracy, confirming the method's effectiveness for downstream tasks in robotic welding.
特征跟踪对于焊接履带式机器人的轨迹规划至关重要。由于焊接通常发生在管道或船体等黑暗环境中,该系统需要进行低光图像采集以用于激光跟踪。然而,此类图像通常亮度和对比度较差,会降低焊缝特征提取和轨迹异常检测的准确性。为了解决这个问题,我们提出了一种针对熔覆场景量身定制的基于Retinex的低光增强网络。该网络具有照明曲线估计模块,并且在训练期间不需要成对或不成对的参考图像,从而减轻了对特定熔覆数据集的需求。它可以自适应地调整亮度,恢复图像细节,并有效抑制噪声。在公共(LOLv1和LOLv2)和自行收集的焊缝数据集上进行的大量实验表明,我们的方法在PSNR、SSIM和LPIPS方面优于现有方法。此外,低光条件下的焊缝分割实现了95.1%的交并比和98.9%的准确率,证实了该方法对机器人焊接下游任务的有效性。