Kaur Amandeep, Rani Shalli, Shabaz Mohammad
Chitkara University Institute of Engineering & Technology, Chitkara University, Rajpura, Punjab, India.
Marwadi University Research Center, Department of Computer Engineering, Faculty of Engineering and Technology, Marwadi University, Rajkot, 360003, Gujarat, India.
Sci Rep. 2025 Jul 18;15(1):26132. doi: 10.1038/s41598-025-11815-z.
Autonomous underwater vehicles (AUVs) are essential for marine exploration, monitoring, and surveillance, especially in hazardous or inaccessible environments for human divers. Underwater imaging systems frequently face considerable difficulties in detecting and tracking objects due to image degradation resulting from light scattering, colour distortion, and haze. Conventional enhancement methods-like histogram equalisation and gamma correction-struggle with non-uniform illumination and frequently do not maintain critical structural details and perceptual quality. To address these limitations, this work proposes a novel framework for underwater image dehazing and enhancement that incorporates three essential components: a generative adversarial network (GAN), a bottleneck attention module (BAM), and an enhanced Retinex-based contrast enhancement technique. The GAN acquires the intricate correspondence between deteriorated and high-quality underwater images, facilitating the restoration of fine textures and the attenuation of noise. The BAM selectively amplifies spatial and channel-specific features, thereby augmenting the network's capacity to preserve natural hues and intricate details. The modified Retinex algorithm adaptively distinguishes between illumination and reflectance components, facilitating context-sensitive contrast enhancement across various lighting conditions. This integrated architecture facilitates collaborative learning among generative modelling, attention-driven feature refinement, and physics-based enhancement. The proposed method undergoes thorough evaluation on the underwater Image enhancement benchmark (UIEB) dataset, which consists of 890 authentic underwater images. This study presents exceptional quantitative performance across various evaluation metrics: a UIQM score of 3.71 (indicating image quality), a PSNR of 28.4 dB (reflecting signal fidelity), an SSIM of 0.88 (representing structural similarity), and a perceptual LPIPS score of 0.082. The low LPIPS score underscores the perceptual realism of the enhanced images, correlating effectively with human visual preferences. These results distinctly surpass current classical and learning-based enhancement methods, demonstrating the efficacy and resilience of this approach for practical underwater vision applications.
自主水下航行器(AUV)对于海洋探索、监测和监视至关重要,特别是在人类潜水员面临危险或无法到达的环境中。由于光散射、颜色失真和雾霾导致的图像退化,水下成像系统在检测和跟踪物体时经常面临相当大的困难。传统的增强方法,如直方图均衡化和伽马校正,在处理非均匀照明时存在困难,并且经常无法保留关键的结构细节和感知质量。为了解决这些限制,这项工作提出了一种新颖的水下图像去雾和增强框架,该框架包含三个基本组件:生成对抗网络(GAN)、瓶颈注意力模块(BAM)和基于增强视网膜的对比度增强技术。GAN获取退化和高质量水下图像之间的复杂对应关系,有助于恢复精细纹理并减少噪声。BAM选择性地放大空间和通道特定特征,从而增强网络保留自然色调和复杂细节的能力。改进的视网膜算法自适应地区分照明和反射分量,有助于在各种光照条件下进行上下文敏感的对比度增强。这种集成架构促进了生成建模、注意力驱动的特征细化和基于物理的增强之间的协作学习。所提出的方法在水下图像增强基准(UIEB)数据集上进行了全面评估,该数据集由890张真实水下图像组成。这项研究在各种评估指标上呈现出优异的定量性能:UIQM分数为3.71(表示图像质量),PSNR为28.4 dB(反映信号保真度),SSIM为0.88(表示结构相似性),感知LPIPS分数为0.082。低LPIPS分数强调了增强图像的感知真实感,与人类视觉偏好有效相关。这些结果明显超过了当前的经典和基于学习的增强方法,证明了这种方法在实际水下视觉应用中的有效性和适应性。