Suppr超能文献

微机电系统(MEMS)接触式开关热导率的研究

Investigation of the Thermal Conductance of MEMS Contact Switches.

作者信息

Chen Zhiqiang, Xie Zhongbin

机构信息

School of Mechano-Electronic Engineering, Xidian University, Xi'an 710071, China.

出版信息

Micromachines (Basel). 2025 Jul 28;16(8):872. doi: 10.3390/mi16080872.

Abstract

Microelectromechanical system (MEMS) devices are specialized electronic devices that integrate the benefits of both mechanical and electrical structures. However, the contact behavior between the interfaces of these structures can significantly impact the performance of MEMS devices, particularly when the surface roughness approaches the characteristic size of the devices. In such cases, the contact between the interfaces is not a perfect face-to-face interaction but occurs through point-to-point contact. As a result, the contact area changes with varying contact pressures and surface roughness, influencing the thermal and electrical performance. By integrating the CMY model with finite element simulations, we systematically explored the thermal conductance regulation mechanism of MEMS contact switches. We analyzed the effects of the contact pressure, micro-hardness, surface roughness, and other parameters on thermal conductance, providing essential theoretical support for enhancing reliability and optimizing thermal management in MEMS contact switches. We examined the thermal contact, gap, and joint conductance of an MEMS switch under different contact pressures, micro-hardness values, and surface roughness levels using the CMY model. Our findings show that both the thermal contact and gap conductance increase with higher contact pressure. For a fixed contact pressure, the thermal contact conductance decreases with rising micro-hardness and root mean square (RMS) surface roughness but increases with a higher mean asperity slope. Notably, the thermal gap conductance is considerably lower than the thermal contact conductance.

摘要

微机电系统(MEMS)器件是一种特殊的电子器件,它融合了机械结构和电气结构的优点。然而,这些结构界面之间的接触行为会显著影响MEMS器件的性能,尤其是当表面粗糙度接近器件的特征尺寸时。在这种情况下,界面之间的接触并非完美的面对面相互作用,而是通过点对点接触发生。因此,接触面积会随着接触压力和表面粗糙度的变化而改变,从而影响热性能和电性能。通过将CMY模型与有限元模拟相结合,我们系统地探索了MEMS接触开关的热传导调节机制。我们分析了接触压力、显微硬度、表面粗糙度等参数对热传导的影响,为提高MEMS接触开关的可靠性和优化热管理提供了重要的理论支持。我们使用CMY模型研究了MEMS开关在不同接触压力、显微硬度值和表面粗糙度水平下的热接触、间隙和接头传导率。我们的研究结果表明,热接触和间隙传导率都随着接触压力的增加而增加。对于固定的接触压力,热接触传导率随着显微硬度和均方根(RMS)表面粗糙度的增加而降低,但随着平均粗糙斜率的增加而增加。值得注意的是,热间隙传导率远低于热接触传导率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1f8/12388443/9a359bd18342/micromachines-16-00872-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验