Suppr超能文献

具有Fe─N─C/FeC结构单元和空心扩散位点的铁单原子掺杂木质衍生阳极用于增强钠离子存储

Fe-Single-Atom Incorporated Wood-Derived Anode with Fe─N─C/FeC Structural Unit and Hollow Diffusion Sites for Enhanced Sodium-Ion Storage.

作者信息

Patil Rahul, Pathak Prakash Kumar, Mishra Meemansha, Matsagar Babasaheb M, Mohini Antra, Chen Norman C-R, Wu Kevn C-W, Bano Amreen, Salunkhe Rahul R, Dutta Saikat

机构信息

Electrochemical Energy & Sensor Research Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University Uttar Pradesh, Noida, 77282, India.

VSB Technical University of Ostrava, Centre for Energy and Environmental Technologies, Nanotechnology Centre, 17. listopadu 2172/15, Ostrava, 70800, Czech Republic.

出版信息

Small. 2025 Aug 28:e07064. doi: 10.1002/smll.202507064.

Abstract

Sluggish diffusion kinetics of Na drastically restrain the rate capability and capacitance of the anode for sodium-ion batteries (SIBs). Herein, a Fe single-atom strategy is employed to construct Fe─N─O active sites closely coupled with FeC species, establishing strong electronic interactions and, more importantly, an optimized coordination environment through precise tuning of their composition ratio with wood-derived nanoporous carbon (WNC) support. The charging Na through nanoporous carbon of Fe─N─O-WNC anode is revealed by electrochemical capacitive and charge-discharge studies to establish a reversible conversion and diffusion of Na supported by theoretical calculation of Na migration energy (eV) against the diffusion path. Fe─N─O-WNC anode, assembled with sodium foil as counter electrodes in a coin cell, exhibits a significant discharge-specific capacity of 318 mAh g at a current density of 50 mAg. The electrochemical analysis support the role of Fe─N bonding in modulating the electronic environment of Na diffusion sites. The incorporation of Fe─N─O in WNC results in 1) faster Na diffusion through hollow (H) sites, 2) stretching of the Fe─N bond during discharge cycles. In addition, Fe─N─O-WNC anode promises for the manufacturing of advanced SIBs from a renewable material and thereby enhancing the investigation of sodiophilic Fe─N sites.

摘要

钠离子在阳极的扩散动力学缓慢,极大地限制了钠离子电池(SIB)阳极的倍率性能和电容。在此,采用铁单原子策略构建与碳化铁物种紧密耦合的Fe─N─O活性位点,通过精确调节其与木质衍生纳米多孔碳(WNC)载体的组成比,建立强电子相互作用,更重要的是,建立优化的配位环境。通过电化学电容和充放电研究揭示了Fe─N─O-WNC阳极中钠离子通过纳米多孔碳的充电过程,通过钠离子迁移能(eV)对扩散路径的理论计算,证实了钠离子的可逆转化和扩散。以钠箔作为对电极组装在扣式电池中的Fe─N─O-WNC阳极,在电流密度为50 mAg时表现出318 mAh g的显著放电比容量。电化学分析支持了Fe─N键在调节钠离子扩散位点电子环境中的作用。在WNC中引入Fe─N─O导致:1)钠离子通过中空(H)位点的扩散更快;2)放电循环过程中Fe─N键的拉伸。此外,Fe─N─O-WNC阳极有望用可再生材料制造先进的SIB,从而加强对亲钠Fe─N位点的研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验