Suppr超能文献

基底动脉闭塞性卒中血管内治疗的传统影像与先进影像选择

Conventional versus advanced imaging selection for endovascular treatment of basilar artery occlusion strokes.

作者信息

Chen Huanwen, Colasurdo Marco, Matsukawa Hidetoshi, Cunningham Conor, Maier Ilko, Al Kasab Sami, Jabbour Pascal, Kim Joon-Tae, Wolfe Stacey Quintero, Rai Ansaar, Starke Robert M, Psychogios Marios-Nikos, Samaniego Edgar A, Goyal Nitin, Yoshimura Shinichi, Cuellar Hugo, Grossberg Jonathan A, Alawieh Ali, Alaraj Ali, Ezzeldin Mohamad, Romano Daniele G, Tanweer Omar, Mascitelli Justin, Fragata Isabel, Polifka Adam, Siddiqui Fazeel, Osbun Joshua, Crosa Roberto, Matouk Charles, Park Min S, Levitt Michael R, Brinjikji Waleed, Moss Mark, Dumont Travis, Daglioglu Ergun, Williamson Richard, Navia Pedro, Leacy Reade De, Chowdhry Shakeel, Altschul David J, Spiotta Alejandro M, Kan Peter

机构信息

National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.

MedStar Georgetown University Hospital, Washington, DC, USA.

出版信息

Eur Stroke J. 2025 Aug 28:23969873251364973. doi: 10.1177/23969873251364973.

Abstract

INTRODUCTION

Endovascular thrombectomy (EVT) is an effective treatment for basilar artery occlusion (BAO) stroke in select patients. While there is a growing body of literature suggesting that advanced imaging modalities such as computed tomography perfusion (CTP) and magnetic resonance (MR) may not be necessary for selecting anterior circulation large vessel occlusion stroke patients for EVT, whether advanced imaging may be superior to conventional imaging (non-contrast CT and CT angiography) in identifying good treatment candidates among BAO patients is less clear.

PATIENTS AND METHODS

This was a multicenter retrospective cohort study of BAO EVT patients treated from 2013 to 2022 in the Stroke Thrombectomy and Aneurysm Registry. Patients selected for EVT by advanced imaging (CTP or MR) were matched with those selected by conventional imaging using propensity score matching (PSM) accounting for possible confounders. Primary outcome was functional independence at 90 days. Other outcomes include bedridden state or death at 90-days and symptomatic intracranial hemorrhage (sICH).

RESULTS

268 patients were included. 150 patients were selected for BAO EVT by conventional imaging, 86 by CTP, and 32 by MR. Patients selected by advanced imaging were significantly older than those selected by conventional imaging (median age 71 vs 64 years,  = 0.001); patient characteristics were otherwise similar between cohorts. After PSM, 90-day outcomes were similar between the two cohorts ( = 0.56), with similar rates of functional independence (39.4% vs 35.1%,  = 0.65), bedridden state or death (40.4% vs 44.7%,  = 0.66), and sICH (3.3% vs 5.7%,  = 0.49) for conventional and advanced imaging groups, respectively. Results were similar across treatment time windows (all  > 0.05).

CONCLUSIONS

Selecting patients for basilar EVT using conventional versus advanced imaging did not result in different clinical outcomes, regardless of treatment time windows. Conventional imaging appears sufficient as a first-line tool for selecting basilar EVT patients in routine clinical practice.

摘要

引言

血管内血栓切除术(EVT)是治疗部分基底动脉闭塞(BAO)性卒中的有效方法。虽然越来越多的文献表明,在选择接受EVT治疗的前循环大血管闭塞性卒中患者时,计算机断层扫描灌注成像(CTP)和磁共振成像(MR)等先进成像方式可能并非必要,但在识别BAO患者中适合治疗的候选者方面,先进成像是否优于传统成像(非增强CT和CT血管造影)尚不清楚。

患者与方法

这是一项对2013年至2022年在卒中血栓切除术和动脉瘤登记处接受治疗的BAO-EVT患者进行的多中心回顾性队列研究。通过先进成像(CTP或MR)选择接受EVT治疗的患者与通过传统成像选择的患者进行倾向评分匹配(PSM),以考虑可能的混杂因素。主要结局是90天时的功能独立性。其他结局包括90天时的卧床状态或死亡以及症状性颅内出血(sICH)。

结果

共纳入268例患者。150例患者通过传统成像被选作BAO-EVT治疗对象,86例通过CTP,32例通过MR。通过先进成像选择的患者明显比通过传统成像选择的患者年龄更大(中位年龄71岁对64岁,P = 0.001);各队列间患者特征在其他方面相似。PSM后,两个队列的90天结局相似(P = 0.56),传统成像组和先进成像组的功能独立性发生率相似(39.4%对35.1%,P = 0.65),卧床状态或死亡率相似(40.4%对44.7%,P = 0.66),sICH发生率相似(3.3%对5.7%,P = 0.49)。在不同治疗时间窗内结果相似(均P > 0.05)。

结论

无论治疗时间窗如何,使用传统成像与先进成像选择基底动脉EVT患者并未导致不同的临床结局。在常规临床实践中,传统成像似乎足以作为选择基底动脉EVT患者的一线工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3abf/12394210/c0e917b42cc3/10.1177_23969873251364973-img2.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验