Suppr超能文献

大规模体检人群中糖尿病视网膜病变和眼底异常的人工智能辅助筛查

AI-Assisted Screening for Diabetic Retinopathy and Fundus Abnormalities in a Large-Scale Physical Examination Population.

作者信息

Liang Xiaoying, Bao Yali, Du Yongyi, Kong Ning

机构信息

Department of Ophthalmology, The Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, People's Republic of China.

出版信息

Clin Ophthalmol. 2025 Aug 22;19:2889-2900. doi: 10.2147/OPTH.S538020. eCollection 2025.

Abstract

PURPOSE

Due to the high incidence rate of eye diseases, various artificial intelligence (AI) screening systems for retinal eye disorders have been developed at present. This study aimed to evaluate the diagnostic performance and clinical value of an AI-assisted system for large-scale screening of diabetic retinopathy (DR) and other fundus abnormalities in a real-world physical examination population.

METHODS

This retrospective study analyzed 54,353 fundus examination records collected from the local hospital in 2020. An AI-assisted system was used to screen for DR and other retinal abnormalities. Manual interpretation was conducted to validate AI predictions, and data were stratified by comorbidities and systemic risk factors.

RESULTS

Approximately 25% of individuals tested positive for fundus lesions. The AI-assisted system demonstrated high diagnostic performance, with a negative predictive value ≥96% and a positive predictive value ≥90%. Common abnormalities detected included retinal vascular sclerosis, drusen, maculopathy, optic cup enlargement, and hemorrhage. Higher positive detection rates were observed in individuals with a history of diabetes, hypertension, high myopia, and other systemic conditions, with detection rates increasing with disease duration.

CONCLUSION

AI-assisted screening offers an effective, scalable approach for early DR detection and can also identify systemic diseases with retinal manifestations. Integration of AI with big data platforms enables timely intervention, especially in underserved areas. Building a multi-institutional DR data platform may revolutionize retinal disease management and improve patient outcomes. This study supports the clinical application of AI in enhancing diagnostic efficiency and targeting high-risk populations for early intervention.

摘要

目的

由于眼部疾病的高发病率,目前已开发出各种用于视网膜疾病的人工智能(AI)筛查系统。本研究旨在评估一种AI辅助系统在真实世界体检人群中大规模筛查糖尿病视网膜病变(DR)和其他眼底异常的诊断性能及临床价值。

方法

这项回顾性研究分析了2020年从当地医院收集的54353份眼底检查记录。使用AI辅助系统筛查DR和其他视网膜异常。通过人工解读来验证AI预测结果,并按合并症和全身风险因素对数据进行分层。

结果

约25%的个体眼底病变检测呈阳性。AI辅助系统显示出较高的诊断性能,阴性预测值≥96%,阳性预测值≥90%。检测到的常见异常包括视网膜血管硬化、玻璃膜疣、黄斑病变、视杯扩大和出血。在有糖尿病、高血压、高度近视和其他全身疾病史的个体中观察到更高的阳性检出率,且检出率随病程增加。

结论

AI辅助筛查为早期DR检测提供了一种有效、可扩展的方法,还能识别有视网膜表现的全身疾病。将AI与大数据平台整合可实现及时干预,尤其是在服务不足的地区。建立多机构DR数据平台可能会彻底改变视网膜疾病的管理并改善患者预后。本研究支持AI在提高诊断效率和针对高危人群进行早期干预方面的临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/716d/12380004/78469a793b93/OPTH-19-2889-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验