Suppr超能文献

基于视网膜成像的眼科学:人工智能作为心血管和代谢疾病诊断工具

Retinal Imaging-Based Oculomics: Artificial Intelligence as a Tool in the Diagnosis of Cardiovascular and Metabolic Diseases.

作者信息

Ghenciu Laura Andreea, Dima Mirabela, Stoicescu Emil Robert, Iacob Roxana, Boru Casiana, Hațegan Ovidiu Alin

机构信息

Department of Functional Sciences, 'Victor Babes' University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania.

Center for Translational Research and Systems Medicine, 'Victor Babes' University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania.

出版信息

Biomedicines. 2024 Sep 23;12(9):2150. doi: 10.3390/biomedicines12092150.

Abstract

Cardiovascular diseases (CVDs) are a major cause of mortality globally, emphasizing the need for early detection and effective risk assessment to improve patient outcomes. Advances in oculomics, which utilize the relationship between retinal microvascular changes and systemic vascular health, offer a promising non-invasive approach to assessing CVD risk. Retinal fundus imaging and optical coherence tomography/angiography (OCT/OCTA) provides critical information for early diagnosis, with retinal vascular parameters such as vessel caliber, tortuosity, and branching patterns identified as key biomarkers. Given the large volume of data generated during routine eye exams, there is a growing need for automated tools to aid in diagnosis and risk prediction. The study demonstrates that AI-driven analysis of retinal images can accurately predict cardiovascular risk factors, cardiovascular events, and metabolic diseases, surpassing traditional diagnostic methods in some cases. These models achieved area under the curve (AUC) values ranging from 0.71 to 0.87, sensitivity between 71% and 89%, and specificity between 40% and 70%, surpassing traditional diagnostic methods in some cases. This approach highlights the potential of retinal imaging as a key component in personalized medicine, enabling more precise risk assessment and earlier intervention. It not only aids in detecting vascular abnormalities that may precede cardiovascular events but also offers a scalable, non-invasive, and cost-effective solution for widespread screening. However, the article also emphasizes the need for further research to standardize imaging protocols and validate the clinical utility of these biomarkers across different populations. By integrating oculomics into routine clinical practice, healthcare providers could significantly enhance early detection and management of systemic diseases, ultimately improving patient outcomes. Fundus image analysis thus represents a valuable tool in the future of precision medicine and cardiovascular health management.

摘要

心血管疾病(CVDs)是全球主要的死亡原因,这凸显了早期检测和有效风险评估以改善患者预后的必要性。眼科学的进展利用视网膜微血管变化与全身血管健康之间的关系,为评估心血管疾病风险提供了一种有前景的非侵入性方法。视网膜眼底成像和光学相干断层扫描/血管造影(OCT/OCTA)为早期诊断提供关键信息,视网膜血管参数如血管管径、迂曲度和分支模式被确定为关键生物标志物。鉴于常规眼科检查期间产生的大量数据,对辅助诊断和风险预测的自动化工具的需求日益增长。该研究表明,人工智能驱动的视网膜图像分析可以准确预测心血管风险因素、心血管事件和代谢疾病,在某些情况下超过传统诊断方法。这些模型的曲线下面积(AUC)值在0.71至0.87之间,灵敏度在71%至89%之间,特异性在40%至70%之间,在某些情况下超过传统诊断方法。这种方法凸显了视网膜成像作为个性化医疗关键组成部分的潜力,能够实现更精确的风险评估和更早的干预。它不仅有助于检测可能先于心血管事件的血管异常,还为广泛筛查提供了一种可扩展、非侵入性且具有成本效益的解决方案。然而,文章也强调需要进一步研究以标准化成像方案并验证这些生物标志物在不同人群中的临床效用。通过将眼科学整合到常规临床实践中,医疗保健提供者可以显著加强全身性疾病的早期检测和管理,最终改善患者预后。因此,眼底图像分析是精准医学和心血管健康管理未来的一种有价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f55/11430496/6b7548117a8f/biomedicines-12-02150-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验