Suppr超能文献

基于数据充分性的网络推理不确定性量化

Uncertainty Quantification of Network Inference with Data Sufficiency.

作者信息

Singhal Bharat, Ocampo-Espindola Jorge Luis, Nikhil K L, Herzog Erik D, Kiss István Z, Li Jr-Shin

机构信息

Department of Electrical and Systems Engineering, Washington University in St Louis, St. Louis, Missouri 63130, USA.

Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, USA.

出版信息

IEEE Trans Netw Sci Eng. 2025 Sep-Oct;12(5):3600-3610. doi: 10.1109/tnse.2025.3563303. Epub 2025 Apr 22.

Abstract

Network inference, which involves reconstructing the connectivity structure of a network from recorded data, is essential for broadening our understanding of physical, biological, and chemical systems. Although data-driven network inference algorithms have made significant strides in recent years, determining how much data is required so that the inferred network topology faithfully mirrors the underlying network remains an essential but often overlooked subject. In this paper, we present a statistical method to determine whether the recorded data carries sufficient variability to ensure an accurate reconstruction of the true network topology. Our approach leverages parametric confidence intervals to establish the bounds of true connection strengths, which subsequently enable the uncertainty quantification of inferred connectivity. The proposed technique is validated using noisy data generated from networks of Kuramoto and Stuart-Landau oscillators. Additionally, the method is applied to experimentally obtained data from an electrochemical oscillator network, where we find that the data sufficiency technique can successfully predict the accuracy of the inferred network.

摘要

网络推断,即从记录的数据中重建网络的连接结构,对于拓宽我们对物理、生物和化学系统的理解至关重要。尽管近年来数据驱动的网络推断算法取得了显著进展,但确定需要多少数据才能使推断出的网络拓扑忠实地反映底层网络仍然是一个重要但经常被忽视的问题。在本文中,我们提出了一种统计方法,以确定记录的数据是否具有足够的变异性,以确保准确重建真实的网络拓扑。我们的方法利用参数置信区间来确定真实连接强度的界限,这随后能够对推断的连通性进行不确定性量化。所提出的技术通过从Kuramoto和Stuart-Landau振荡器网络生成的噪声数据进行了验证。此外,该方法应用于从电化学振荡器网络实验获得的数据,我们发现数据充分性技术可以成功预测推断网络的准确性。

相似文献

1
Uncertainty Quantification of Network Inference with Data Sufficiency.基于数据充分性的网络推理不确定性量化
IEEE Trans Netw Sci Eng. 2025 Sep-Oct;12(5):3600-3610. doi: 10.1109/tnse.2025.3563303. Epub 2025 Apr 22.
10
Electronic cigarettes for smoking cessation.电子烟戒烟。
Cochrane Database Syst Rev. 2024 Jan 8;1(1):CD010216. doi: 10.1002/14651858.CD010216.pub8.

本文引用的文献

1
Data-Efficient Inference of Nonlinear Oscillator Networks.非线性振荡器网络的数据高效推理
IFAC Pap OnLine. 2023;56(2):10089-10094. doi: 10.1016/j.ifacol.2023.10.879. Epub 2023 Nov 22.
7
Stability indicators in network reconstruction.网络重建中的稳定性指标。
PLoS One. 2014 Feb 27;9(2):e89815. doi: 10.1371/journal.pone.0089815. eCollection 2014.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验