Suppr超能文献

脑功能连接网络的图分析与模块化:寻找最优阈值

Graph Analysis and Modularity of Brain Functional Connectivity Networks: Searching for the Optimal Threshold.

作者信息

Bordier Cécile, Nicolini Carlo, Bifone Angelo

机构信息

Center for Neuroscience and Cognitive Systems, Istituto Italiano di TecnologiaRovereto, Italy.

出版信息

Front Neurosci. 2017 Aug 3;11:441. doi: 10.3389/fnins.2017.00441. eCollection 2017.

Abstract

Neuroimaging data can be represented as networks of nodes and edges that capture the topological organization of the brain connectivity. Graph theory provides a general and powerful framework to study these networks and their structure at various scales. By way of example, community detection methods have been widely applied to investigate the modular structure of many natural networks, including brain functional connectivity networks. Sparsification procedures are often applied to remove the weakest edges, which are the most affected by experimental noise, and to reduce the density of the graph, thus making it theoretically and computationally more tractable. However, weak links may also contain significant structural information, and procedures to identify the optimal tradeoff are the subject of active research. Here, we explore the use of percolation analysis, a method grounded in statistical physics, to identify the optimal sparsification threshold for community detection in brain connectivity networks. By using synthetic networks endowed with a ground-truth modular structure and realistic topological features typical of human brain functional connectivity networks, we show that percolation analysis can be applied to identify the optimal sparsification threshold that maximizes information on the networks' community structure. We validate this approach using three different community detection methods widely applied to the analysis of brain connectivity networks: Newman's modularity, InfoMap and Asymptotical Surprise. Importantly, we test the effects of noise and data variability, which are critical factors to determine the optimal threshold. This data-driven method should prove particularly useful in the analysis of the community structure of brain networks in populations characterized by different connectivity strengths, such as patients and controls.

摘要

神经成像数据可以表示为节点和边的网络,这些网络捕获了大脑连接的拓扑结构。图论提供了一个通用且强大的框架,用于在各种尺度上研究这些网络及其结构。例如,社区检测方法已被广泛应用于研究许多自然网络的模块化结构,包括大脑功能连接网络。稀疏化程序通常用于去除受实验噪声影响最大的最弱边,并降低图的密度,从而使其在理论和计算上更易于处理。然而,弱连接也可能包含重要的结构信息,确定最佳权衡的程序是当前积极研究的主题。在这里,我们探索使用基于统计物理学的渗流分析方法,来确定大脑连接网络中社区检测的最佳稀疏化阈值。通过使用具有真实模块化结构和人类大脑功能连接网络典型拓扑特征的合成网络,我们表明渗流分析可用于确定能最大化网络社区结构信息的最佳稀疏化阈值。我们使用广泛应用于大脑连接网络分析的三种不同社区检测方法进行验证:纽曼模块化、信息地图和渐近惊喜。重要的是,我们测试了噪声和数据变异性的影响,这是确定最佳阈值的关键因素。这种数据驱动的方法在分析具有不同连接强度的人群(如患者和对照组)的大脑网络社区结构时应该特别有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3b6/5540956/099eef0f92b3/fnins-11-00441-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验