Suppr超能文献

基于无人机的多层特征选择改善了干旱地区棉花的氮含量估计。

UAV-based multitier feature selection improves nitrogen content estimation in arid-region cotton.

作者信息

Li Fengxiu, Zhao Chongqi, Ma Yingjie, Lv Ning, Guo Yanzhao

机构信息

College of Hydraulic and Civil Engineering, Xinjiang Agricultural University, Urumqi, China.

Xinjiang Key Laboratory of Hydraulic Engineering Safety and Water Disaster Prevention, Urumqi, China.

出版信息

Front Plant Sci. 2025 Aug 12;16:1639101. doi: 10.3389/fpls.2025.1639101. eCollection 2025.

Abstract

INTRODUCTION

Nitrogen plays a pivotal role in determining cotton yield and fiber quality. Nevertheless, because high-dimensional remote-sensing data are inherently complex and redundant, accurately estimating cotton plant nitrogen concentration (PNC) from unmanned aerial vehicle (UAV) imagery remains problematic, which in turn constrains both model precision and transferability.

METHODS

Accordingly, this study introduces a hierarchical feature-selection scheme combining Elastic Net and Boruta-SHAP to eliminate redundant remote-sensing variables and evaluates six machine-learning algorithms to pinpoint the optimal method for estimating cotton nitrogen status.

RESULTS

Our findings reveal that five critical features (Mean_B, Mean_R, NDRE_GOSAVI, NDVI, GRVI) markedly enhanced model performance. Among the tested algorithms, random forest achieved superior performance (R² = 0.97-0.98; RMSE = 0.05-0.08), exceeding all alternatives. Both in-field observations and model outputs demonstrate that cotton PNC consistently decreases throughout development, but optimal conditions of 450 mm irrigation and 300 kg N ha⁻¹ sustain relatively elevated nitrogen levels.

DISCUSSION

Collectively, the study provides robust guidance for precision nitrogen management in cotton production within arid regions.

摘要

引言

氮在决定棉花产量和纤维品质方面起着关键作用。然而,由于高维遥感数据本身复杂且冗余,从无人机图像中准确估算棉花植株氮浓度(PNC)仍然存在问题,这反过来又限制了模型的精度和可转移性。

方法

因此,本研究引入了一种结合弹性网络和Boruta-SHAP的分层特征选择方案,以消除冗余遥感变量,并评估六种机器学习算法,以确定估算棉花氮素状况的最佳方法。

结果

我们的研究结果表明,五个关键特征(Mean_B、Mean_R、NDRE_GOSAVI、NDVI、GRVI)显著提高了模型性能。在测试的算法中,随机森林表现出卓越的性能(R² = 0.97 - 0.98;RMSE = 0.05 - 0.08),超过了所有其他算法。田间观测和模型输出均表明,棉花PNC在整个生育期持续下降,但450毫米灌溉量和300千克氮公顷⁻¹的最佳条件能维持相对较高的氮水平。

讨论

总体而言,该研究为干旱地区棉花生产中的精准氮肥管理提供了有力指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b87c/12378829/cfc263260050/fpls-16-1639101-g001.jpg

相似文献

1
UAV-based multitier feature selection improves nitrogen content estimation in arid-region cotton.
Front Plant Sci. 2025 Aug 12;16:1639101. doi: 10.3389/fpls.2025.1639101. eCollection 2025.
3
Integrated neural network framework for multi-object detection and recognition using UAV imagery.
Front Neurorobot. 2025 Jul 30;19:1643011. doi: 10.3389/fnbot.2025.1643011. eCollection 2025.
5
Stabilizing machine learning for reproducible and explainable results: A novel validation approach to subject-specific insights.
Comput Methods Programs Biomed. 2025 Jun 21;269:108899. doi: 10.1016/j.cmpb.2025.108899.
8
Classification of Nitrogen-Efficient Wheat Varieties Based on UAV Hyperspectral Remote Sensing.
Plants (Basel). 2025 Jun 20;14(13):1908. doi: 10.3390/plants14131908.

本文引用的文献

3
The fusion of vegetation indices increases the accuracy of cotton leaf area prediction.
Front Plant Sci. 2024 Jul 4;15:1357193. doi: 10.3389/fpls.2024.1357193. eCollection 2024.
4
Improving the accuracy of cotton seedling emergence rate estimation by fusing UAV-based multispectral vegetation indices.
Front Plant Sci. 2024 Mar 27;15:1333089. doi: 10.3389/fpls.2024.1333089. eCollection 2024.
5
Estimating yield-contributing physiological parameters of cotton using UAV-based imagery.
Front Plant Sci. 2023 Sep 19;14:1248152. doi: 10.3389/fpls.2023.1248152. eCollection 2023.
7
Estimating leaf area index using unmanned aerial vehicle data: shallow vs. deep machine learning algorithms.
Plant Physiol. 2021 Nov 3;187(3):1551-1576. doi: 10.1093/plphys/kiab322.
8
GBDT-MO: Gradient-Boosted Decision Trees for Multiple Outputs.
IEEE Trans Neural Netw Learn Syst. 2021 Jul;32(7):3156-3167. doi: 10.1109/TNNLS.2020.3009776. Epub 2021 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验