Suppr超能文献

卵巢癌中的DNA甲基化与转录因子驱动的免疫亚型

DNA methylation and transcription factor-driven immune subtypes in ovarian cancer.

作者信息

Hu Jingshu, Su Mu, Qin Zhijun, Li Jiayu, Wang Hengyu, Chang Kexin, He Guosheng, Zhang Yan, Chen Xiuwei

机构信息

Department of Gynecologic Oncology, Harbin Medical University Cancer Hospital Harbin, Heilongjiang, 150000, China.

出版信息

Discov Oncol. 2025 Aug 28;16(1):1646. doi: 10.1007/s12672-025-02630-z.

Abstract

Ovarian cancer (OC) remains one of the deadliest gynecological malignancies. Immune checkpoint blockade (ICB) inhibitors efficacy in OC has been minimal, highlighting the need for a deeper understanding of the immune microenvironment in OC. Recent studies suggest that DNA methylation and transcription factors may influence the response to immunotherapy. This study aims to classify ovarian cancer into distinct immune subtypes by integrating DNA methylation and transcription factor data through comprehensive bioinformatics analysis. Using data from The Cancer Genome Atlas (TCGA), we identified twelve differentially methylated genes (DMGs) associated with transcription factors and categorized OC into two immune subtypes, C1 and C2.The C1 subtype exhibited higher levels of immune infiltration and better prognosis, characteristic of immune "hot" tumors, whereas the C2 subtype was associated with lower immune infiltration and poorer prognosis, indicative of immune "cold" tumors. A prognostic prediction model based on four key genes-KRT81, PAPPA2, FGF10, and FMO2-was developed using the least absolute shrinkage and selection operator (LASSO) and Cox regression analyses. This model effectively stratified the TCGA OC cohort into high- and low-risk groups and was validated by predicting patient survival outcomes. Additionally, drug sensitivity analysis revealed potential therapeutic targets for different risk groups, offering new avenues for precision treatment in ovarian cancer. Immunohistochemical tests confirmed the potential of KRT81 as a prognostic marker for ovarian cancer. Our findings enhance the understanding of the molecular characteristics of the OC immune microenvironment, propose novel biomarkers for prognosis, which may potentially improve the prognosis of OC.

摘要

卵巢癌(OC)仍然是最致命的妇科恶性肿瘤之一。免疫检查点阻断(ICB)抑制剂在OC中的疗效一直很有限,这凸显了深入了解OC免疫微环境的必要性。最近的研究表明,DNA甲基化和转录因子可能会影响免疫治疗的反应。本研究旨在通过综合生物信息学分析整合DNA甲基化和转录因子数据,将卵巢癌分为不同的免疫亚型。利用来自癌症基因组图谱(TCGA)的数据,我们鉴定出12个与转录因子相关的差异甲基化基因(DMG),并将OC分为两种免疫亚型,即C1和C2。C1亚型表现出更高水平的免疫浸润和更好的预后,具有免疫“热”肿瘤的特征,而C2亚型则与较低的免疫浸润和较差的预后相关,表明是免疫“冷”肿瘤。使用最小绝对收缩和选择算子(LASSO)和Cox回归分析,开发了一种基于四个关键基因——角蛋白81(KRT81)、妊娠相关血浆蛋白A2(PAPPA2)、成纤维细胞生长因子10(FGF10)和黄素单加氧酶2(FMO2)的预后预测模型。该模型有效地将TCGA OC队列分为高风险和低风险组,并通过预测患者生存结果进行了验证。此外,药物敏感性分析揭示了不同风险组的潜在治疗靶点,为卵巢癌的精准治疗提供了新途径。免疫组织化学检测证实了KRT81作为卵巢癌预后标志物的潜力。我们的研究结果加深了对OC免疫微环境分子特征的理解,提出了新的预后生物标志物,这可能会改善OC的预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e01/12394097/49220c37c115/12672_2025_2630_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验