Narayana Jayanth Kumar, Koo Wei Ling Yolanda, Mac Aogáin Micheál, Chotirmall Sanjay H
Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
Department of Biochemistry, St. James's Hospital, Dublin, Ireland.
Eur Respir J. 2025 Aug 28. doi: 10.1183/13993003.00894-2025.
Interest in bronchiectasis is increasing and no prior study has used Artificial Intelligence (AI) to interrogate its rich, multidimensional literature to characterize research trends, themes and knowledge gaps.
We reviewed original bronchiectasis research between 1949-2024 (75-year period) to identify, characterize and assess research trends and trajectories using two AI-powered approaches: (1) ATLAS, an AI-topic modelling tool and (2) a custom model, leveraging ChatGPT embedding and text-generation models.
AI-powered analytics reveal a nine-fold increase in bronchiectasis research speed since 2000, typified by enhanced richness with four new research topics emerging every five years. Publication trends mirror clinical and technological advances, exemplified by significant rises in computed tomography (CT), microbiome and clinical studies following adoption of HRCT (1970s), next-generation sequencing (2005) and the first clinical guidelines (2008-2010). Topics with sustained growth ( popular) include bronchiectasis-COPD overlap, microbiome-infection, cardiovascular health and exacerbations while those with sudden, short-term increased interest ( trending) focused on microbial pathogens and primary ciliary dyskinesia (PCD) genetics. Mortality represents a nascent topic demonstrating highest year-on-year interest. Growth of research within the "vicious vortex" demonstrates thematic imbalance with few studies overlapping with non-vortex components. Evolving research focus toward inflammation is evident, with increased work on comorbidities and quality of life demonstrating a shift from disease- to patient-centric research.
AI captures bronchiectasis as a dynamic and interdisciplinary field in continuing growth. Emerging research topics extend beyond the "vicious-vortex" framework indicating transition from disease- to patient-centric approaches to optimize clinical care.
对支气管扩张症的关注日益增加,此前尚无研究利用人工智能(AI)审视其丰富的多维度文献,以刻画研究趋势、主题和知识空白。
我们回顾了1949年至2024年(75年期间)的原发性支气管扩张症研究,使用两种人工智能驱动的方法来识别、刻画和评估研究趋势与轨迹:(1)ATLAS,一种人工智能主题建模工具;(2)一个定制模型,利用ChatGPT嵌入和文本生成模型。
人工智能驱动的分析显示,自2000年以来,支气管扩张症的研究速度增长了九倍,其特点是丰富度提高,每五年出现四个新的研究主题。出版趋势反映了临床和技术进步,例如在采用高分辨率计算机断层扫描(HRCT,20世纪70年代)、下一代测序(2005年)和首个临床指南(2008 - 2010年)之后,计算机断层扫描(CT)、微生物组和临床研究显著增加。持续增长(热门)的主题包括支气管扩张症 - 慢性阻塞性肺疾病重叠、微生物组 - 感染、心血管健康和病情加重,而那些突然、短期兴趣增加(趋势)的主题集中在微生物病原体和原发性纤毛运动障碍(PCD)遗传学。死亡率是一个新兴主题,显示出最高的同比关注度。“恶性循环”内的研究增长表明主题失衡,很少有研究与非循环部分重叠。朝着炎症的研究重点演变很明显,关于合并症和生活质量的研究增加,表明从以疾病为中心向以患者为中心的研究转变。
人工智能将支气管扩张症描绘为一个持续发展的动态跨学科领域。新兴研究主题超越了“恶性循环”框架,表明从以疾病为中心向以患者为中心的方法转变,以优化临床护理。