Yang Huanxin, Lu Haolin, Wang Xuejiao, Sun Wenda, Yang Yujing, Xiong Wei, Long Guankui, Xu Jialiang, Zhang Xiaodan, Yuan Mingjian, Li Xiyan
Institute of Photoelectronic Thin Film Devices and Technology, Nankai University; Tianjin Key Laboratory of Efficient Utilization of Solar Energy, Nankai University; Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University; State Key Laboratory of Photovoltaic Materials and Cells, Nankai University; Academy for Advanced Interdisciplinary Studies (AAIS), Nankai University, Tianjin, 300350, China.
School of Materials Science and Engineering, Nankai University, Tianjin, 300350, China.
Light Sci Appl. 2025 Aug 28;14(1):297. doi: 10.1038/s41377-025-01973-0.
Luminescent solar concentrators (LSCs) offer a sustainable approach to power generation using fluorescent glasses, yet their green industrialization is impeded by the limited production scale and non-recyclability of embedded nanocrystals. Here, we introduce a lead-free perovskite derivative ETPSbCl (ETP = (CH)PCH) with a reversible transition between powder and glass states. Through molecular dynamics and density functional theory, we elucidate the possible structural distortions of [SbCl] pyramids and their impact on luminescence. The fabricated LSCs, utilizing such fluorescent glasses with an efficient absorption for <420 nm, achieve the highest power conversion and optical efficiencies of ~5.56% and ~32.5%, respectively. In addition to self-healing by reheating at ~200 °C, impressively, it could be mass recycled to phosphor by ethanol or heating treatments, which still maintains nearly initial fluorescent performance and could be repurposed like freshly synthesized samples. This work presents a paradigm for the sustainable use of fluorescent materials and offers a reliable path toward low-carbon globalization.
发光太阳能聚光器(LSCs)提供了一种使用荧光玻璃发电的可持续方法,然而,其绿色工业化受到嵌入式纳米晶体生产规模有限和不可回收性的阻碍。在此,我们引入了一种无铅钙钛矿衍生物ETPSbCl(ETP = (CH)PCH),它在粉末态和玻璃态之间具有可逆转变。通过分子动力学和密度泛函理论,我们阐明了[SbCl]金字塔可能的结构畸变及其对发光的影响。利用这种对<420 nm具有高效吸收的荧光玻璃制造的LSCs,分别实现了高达约5.56%和约32.5%的最高功率转换效率和光学效率。除了在约200°C下重新加热实现自愈外,令人印象深刻的是,它可以通过乙醇或热处理大量回收为磷光体,仍保持几乎初始的荧光性能,并且可以像新合成的样品一样重新使用。这项工作为荧光材料的可持续利用提供了一个范例,并为低碳全球化提供了一条可靠的途径。