Woods Joshua E, Alrashdan Fatima, Chen Ellie C, Tan Wendy, John Mathews, Jaworski Lukas, Bernard Drew, Post Allison, Moctezuma-Ramirez Angel, Elgalad Abdelmotagaly, Steele Alexander G, Barber Sean M, Horner Philip J, Faraji Amir H, Sayenko Dimitry G, Razavi Mehdi, Robinson Jacob T
Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
The Texas Heart Institute at Baylor College of Medicine, Houston, TX, USA.
Nat Biomed Eng. 2025 Aug 28. doi: 10.1038/s41551-025-01489-3.
Networks of miniature implants could enable simultaneous sensing and stimulation at different locations in the body, such as the heart and central or peripheral nervous system. This capability would support precise disease tracking and treatment or enable prosthetic technologies with many degrees of freedom. However, wireless power and data transfer are often inefficient through biological tissues, particularly as the number of implanted devices increases. Here we show that magnetoelectric wireless data and power transfer supports a network of millimetre-sized bioelectronic implants in which system efficiency improves with additional devices. We demonstrate wireless, battery-free networks ranging from one to six implants, where the total system efficiency increases from 0.2% to 1.3%, with each node receiving 2.2 mW at 1 cm distance. We show proof-of-concept networks of miniature spinal cord stimulators and cardiac pacing devices in large animals via efficient and robust wireless power transfer. These magnetoelectric implants provide a scalable network architecture of bioelectronic implants for next-generation electronic medicine.
微型植入物网络能够在身体的不同部位(如心脏、中枢或外周神经系统)同时进行传感和刺激。这种能力将有助于精确的疾病跟踪和治疗,或实现具有多个自由度的假肢技术。然而,无线电力和数据传输在生物组织中往往效率低下,尤其是随着植入设备数量的增加。在此,我们展示了磁电无线数据和电力传输支持毫米级生物电子植入物网络,其中系统效率会随着额外设备的增加而提高。我们演示了从一个到六个植入物的无线、无电池网络,总系统效率从0.2%提高到1.3%,每个节点在1厘米距离处接收2.2毫瓦的功率。我们通过高效且稳健的无线电力传输在大型动物体内展示了微型脊髓刺激器和心脏起搏器设备的概念验证网络。这些磁电植入物为下一代电子医学提供了一种可扩展的生物电子植入物网络架构。