Suppr超能文献

经皮穿刺阵列在猪模型中对腰传出和传入脊髓回路进行定位。

Mapping lumbar efferent and afferent spinal circuitries via paddle array in a porcine model.

机构信息

Department of Neurosurgery, Center for Translational Neural Prosthetics and Interfaces, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, United States; Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, United States.

Department of Neurosurgery, Center for Translational Neural Prosthetics and Interfaces, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, United States; Neuroscience Department, International School for Advanced Studies (SISSA), Bonomea, Trieste, Italy.

出版信息

J Neurosci Methods. 2024 May;405:110104. doi: 10.1016/j.jneumeth.2024.110104. Epub 2024 Mar 5.

Abstract

BACKGROUND

Preclinical models are essential for identifying changes occurring after neurologic injury and assessing therapeutic interventions. Yucatan miniature pigs (minipigs) have brain and spinal cord dimensions like humans and are useful for laboratory-to-clinic studies. Yet, little work has been done to map spinal sensorimotor distributions and identify similarities and differences between the porcine and human spinal cords.

NEW METHODS

To characterize efferent and afferent signaling, we implanted a conventional 32-contact, four-column array into the dorsal epidural space over the lumbosacral spinal cord, spanning the L5-L6 vertebrae, in two Yucatan minipigs. Spinally evoked motor potentials were recorded bilaterally in four hindlimb muscles during stimulation delivered from different array locations. Then, cord dorsum potentials were recorded via the array by stimulating the left and right tibial nerves.

RESULTS

Utilizing epidural spinal stimulation, we achieved selective left, right, proximal, and distal activation in the hindlimb muscles. We then determined the selectivity of each muscle as a function of stimulation location which relates to the distribution of the lumbar motor pools.

COMPARISON WITH EXISTING METHODS

Mapping motoneuron distribution to hindlimb muscles and recording responses to peripheral nerve stimulation in the dorsal epidural space reveals insights into ascending and descending signal propagation in the lumbar spinal cord. Clinical-grade arrays have not been utilized in a porcine model.

CONCLUSIONS

These results indicate that efferent and afferent spinal sensorimotor networks are spatially distinct, provide information about the organization of motor pools in the lumbar enlargement, and demonstrate the feasibility of using clinical-grade devices in large animal research.

摘要

背景

临床前模型对于识别神经损伤后发生的变化和评估治疗干预措施至关重要。尤卡坦小型猪(迷你猪)的大脑和脊髓尺寸与人类相似,可用于实验室到临床的研究。然而,很少有研究致力于绘制脊髓感觉运动分布图谱,并确定猪和人类脊髓之间的相似性和差异性。

新方法

为了描述传出和传入信号,我们将传统的 32 个接触点、四列阵列植入到两个尤卡坦迷你猪的腰骶部背侧硬膜外腔,跨越 L5-L6 椎骨。在刺激来自不同阵列位置时,双侧后肢肌肉记录到脊髓诱发的运动电位。然后,通过刺激左右胫神经,通过阵列记录脊髓背侧电位。

结果

利用硬膜外脊髓刺激,我们实现了对后肢肌肉的选择性左、右、近和远侧激活。然后,我们根据刺激位置确定了每个肌肉的选择性,这与腰运动池的分布有关。

与现有方法的比较

将运动神经元分布映射到后肢肌肉,并记录背侧硬膜外空间中对周围神经刺激的反应,揭示了对腰椎脊髓中上行和下行信号传播的深入了解。临床级别的阵列尚未在猪模型中得到应用。

结论

这些结果表明,传出和传入的脊髓感觉运动网络在空间上是不同的,提供了关于腰膨大运动池组织的信息,并证明了在大型动物研究中使用临床级设备的可行性。

相似文献

1
Mapping lumbar efferent and afferent spinal circuitries via paddle array in a porcine model.
J Neurosci Methods. 2024 May;405:110104. doi: 10.1016/j.jneumeth.2024.110104. Epub 2024 Mar 5.
2
Spatiotemporal activation of lumbar sensorimotor networks.
Exp Neurol. 2025 Jun;388:115206. doi: 10.1016/j.expneurol.2025.115206. Epub 2025 Mar 8.
3
Neuromodulation of evoked muscle potentials induced by epidural spinal-cord stimulation in paralyzed individuals.
J Neurophysiol. 2014 Mar;111(5):1088-99. doi: 10.1152/jn.00489.2013. Epub 2013 Dec 11.
4
Safety of mapping the motor networks in the spinal cord using penetrating microelectrodes in Yucatan minipigs.
J Neurosurg Spine. 2024 May 10;41(2):292-304. doi: 10.3171/2024.2.SPINE23757. Print 2024 Aug 1.
5
Rostral lumbar segments are the key controllers of hindlimb locomotor rhythmicity in the adult spinal rat.
J Neurophysiol. 2019 Aug 1;122(2):585-600. doi: 10.1152/jn.00810.2018. Epub 2019 Apr 3.
7
The role of spinal cord neuroanatomy and the variances of epidurally evoked spinal responses.
Bioelectron Med. 2024 Jul 17;10(1):17. doi: 10.1186/s42234-024-00149-2.
9
Intraoperative electrical stimulation of the human dorsal spinal cord reveals a map of arm and hand muscle responses.
J Neurophysiol. 2023 Jan 1;129(1):66-82. doi: 10.1152/jn.00235.2022. Epub 2022 Nov 23.

引用本文的文献

2
Interactions between descending and spinal circuits on motor output.
Exp Neurol. 2025 Jun 10;392:115347. doi: 10.1016/j.expneurol.2025.115347.
3
Spatiotemporal activation of lumbar sensorimotor networks.
Exp Neurol. 2025 Jun;388:115206. doi: 10.1016/j.expneurol.2025.115206. Epub 2025 Mar 8.
4
Scalable networks of wireless bioelectronics using magnetoelectrics.
Res Sq. 2024 Sep 24:rs.3.rs-5005441. doi: 10.21203/rs.3.rs-5005441/v1.

本文引用的文献

1
Porcine spinal cord injury model for translational research across multiple functional systems.
Exp Neurol. 2023 Jan;359:114267. doi: 10.1016/j.expneurol.2022.114267. Epub 2022 Nov 7.
2
Intrafascicular peripheral nerve stimulation produces fine functional hand movements in primates.
Sci Transl Med. 2021 Oct 27;13(617):eabg6463. doi: 10.1126/scitranslmed.abg6463.
3
Comparative neuroanatomy of the lumbosacral spinal cord of the rat, cat, pig, monkey, and human.
Sci Rep. 2021 Jan 21;11(1):1955. doi: 10.1038/s41598-021-81371-9.
4
Evolving challenges to model human diseases for translational research.
Cell Tissue Res. 2020 May;380(2):305-311. doi: 10.1007/s00441-019-03134-3. Epub 2020 Mar 4.
5
Animal models of spinal cord injury: a systematic review.
Spinal Cord. 2017 Aug;55(8):714-721. doi: 10.1038/sc.2016.187. Epub 2017 Jan 24.
6
Translational Relevance of Swine Models of Spinal Cord Injury.
J Neurotrauma. 2017 Feb;34(3):541-551. doi: 10.1089/neu.2016.4567. Epub 2016 Aug 25.
7
Spinal segment-specific transcutaneous stimulation differentially shapes activation pattern among motor pools in humans.
J Appl Physiol (1985). 2015 Jun 1;118(11):1364-74. doi: 10.1152/japplphysiol.01128.2014. Epub 2015 Mar 26.
8
Efficacy of kilohertz-frequency and conventional spinal cord stimulation in rat models of different pain conditions.
Neuromodulation. 2014 Apr;17(3):226-34; discussion 234-5. doi: 10.1111/ner.12161. Epub 2014 Feb 25.
9
Small and large animal models in cardiac contraction research: advantages and disadvantages.
Pharmacol Ther. 2014 Mar;141(3):235-49. doi: 10.1016/j.pharmthera.2013.10.007. Epub 2013 Oct 15.
10
Facilitation of stepping with epidural stimulation in spinal rats: role of sensory input.
J Neurosci. 2008 Jul 30;28(31):7774-80. doi: 10.1523/JNEUROSCI.1069-08.2008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验