Suppr超能文献

利用磁电效应的可扩展无线生物电子网络。

Scalable networks of wireless bioelectronics using magnetoelectrics.

作者信息

Woods Joshua E, Alrashdan Fatima, Chen Ellie C, Tan Wendy, John Mathews, Jaworski Lukas, Bernard Drew, Post Allison, Moctezuma-Ramirez Angel, Elgalad Abdelmotagaly, Steele Alexander G, Barber Sean M, Horner Philip J, Faraji Amir H, Sayenko Dimitry G, Razavi Mehdi, Robinson Jacob T

机构信息

Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.

Texas Heart Institute, Houston, TX, USA.

出版信息

Res Sq. 2024 Sep 24:rs.3.rs-5005441. doi: 10.21203/rs.3.rs-5005441/v1.

Abstract

Networks of miniature bioelectronic implants would enable precise measurement and manipulation of the complex and distributed physiological systems in the body. For example, sensing and stimulation nodes throughout the heart, brain, or peripheral nervous system would more accurately track and treat disease or support prosthetic technologies with many degrees of freedom. A main challenge to creating this type of in-body bioelectronic network is the fact that wireless power and data transfer are often inefficient when communicating through biological tissues. This challenge is typically compounded as one increases the number of implants within the network. Here, we show that magnetoelectric wireless data and power transfer enable a network of millimeter-sized bioelectronic implants where the power transfer efficiency of the system improves as the number of implanted devices increases. Using this property, we demonstrate networks of wireless battery-free bioelectronics ranging from 1 to 6 implants where the wireless power transfer efficiency for the system increases from 0.2% to 1.3%, with each node in the network receiving 2.2 mW at a distance of 1 cm. We use this system for efficient and robust wireless data and power transfer to demonstrate proof-of-concept networks of miniature spinal cord stimulators and cardiac pacing devices in large animals. The scalability of this network architecture enabled by magnetoelectric wireless power transfer provides a platform for building wireless closed-loop networks of bioelectronic implants for next-generation electronic medicine.

摘要

微型生物电子植入物网络将能够精确测量和操控人体中复杂且分布广泛的生理系统。例如,遍布心脏、大脑或外周神经系统的传感和刺激节点将能更准确地追踪和治疗疾病,或为具有多个自由度的假肢技术提供支持。创建这类体内生物电子网络的一个主要挑战在于,当通过生物组织进行通信时,无线电力和数据传输往往效率低下。随着网络中植入物数量的增加,这一挑战通常会更加复杂。在此,我们展示了磁电无线数据和电力传输能够实现一个由毫米级生物电子植入物组成的网络,在该网络中,系统的电力传输效率会随着植入设备数量的增加而提高。利用这一特性,我们展示了由1到6个植入物组成的无线无电池生物电子网络,其中系统的无线电力传输效率从0.2%提高到1.3%,网络中的每个节点在距离1厘米处可接收2.2毫瓦的功率。我们使用该系统进行高效且稳定的无线数据和电力传输,以展示大型动物体内微型脊髓刺激器和心脏起搏器的概念验证网络。由磁电无线电力传输实现的这种网络架构的可扩展性,为构建用于下一代电子医学的生物电子植入物无线闭环网络提供了一个平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f903/11469518/2d5d5d4755a8/nihpp-rs5005441v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验