Suppr超能文献

使用多尺度采样在肝胆期图像上检测小肝脏病变的人工智能软件。

Artificial intelligence software to detect small hepatic lesions on hepatobiliary-phase images using multiscale sampling.

作者信息

Maeda Shogo, Nakamura Yuko, Higaki Toru, Karasudani Ayu, Yamaguchi Tatsuya, Ishihara Masaki, Baba Takayuki, Kondo Shota, Fonseca Dara, Awai Kazuo

机构信息

Diagnostic Radiology, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8551, Japan.

Fujitsu Research, Fujitsu Limited, 4-1-1 Kamikodanaka, Nakaharsa-ku, Kawasaki City, Kanagawa, 211-8588, Japan.

出版信息

Jpn J Radiol. 2025 Aug 29. doi: 10.1007/s11604-025-01859-6.

Abstract

PURPOSE

To investigate the effect of multiscale sampling artificial intelligence (msAI) software adapted to small hepatic lesions on the diagnostic performance of readers interpreting gadoxetic acid-enhanced hepatobiliary-phase (HBP) images.

METHODS

HBP images of 30 patients harboring 186 hepatic lesions were included. Three board-certified radiologists, 9 radiology residents, and 2 general physicians interpreted HBP image data sets twice, once with and once without the msAI software at 2-week intervals. Jackknife free-response receiver-operating characteristic analysis was performed to calculate the figure of merit (FOM) for detecting hepatic lesions. The negative consultation ratio (NCR), percentage of correct diagnoses turning into incorrect by the AI software, was calculated. We defined readers whose NCR was lower than 10% as those correctly diagnosed the false findings presented by the software.

RESULTS

The msAI software significantly improved the lesion localization fraction (LLF) for all readers (0.74 vs 0.82, p < 0.01); the FOM did not (0.76 vs 0.78, p = 0.45). In lesion-size-based subgroup analysis, the LLF (0.40 vs 0.53, p < 0.01) improved significantly with the AI software even for lesions smaller than 6 mm, whereas the FOM (0.63 vs 0.66, p = 0.51) showed no significant difference. Among 10 readers with an NCR lower than 10%, not only the LLF but also the FOM were significantly better with the software (LLF 0.77 vs 0.82, FOM 0.79 vs 0.84, both p < 0.01).

CONCLUSION

The detectability of small hepatic lesions on HBP images was improved with msAI software especially when its results were properly evaluated.

摘要

目的

探讨适用于小肝脏病变的多尺度采样人工智能(msAI)软件对解读钆塞酸增强肝胆期(HBP)图像的阅片者诊断性能的影响。

方法

纳入30例患者共186个肝脏病变的HBP图像。3名具有委员会认证的放射科医生、9名放射科住院医师和2名普通内科医生对HBP图像数据集进行了两次解读,两次解读间隔2周,一次使用msAI软件,一次不使用。采用留一法自由反应接受者操作特征分析来计算检测肝脏病变的品质因数(FOM)。计算阴性会诊率(NCR),即被人工智能软件将正确诊断转为错误诊断的比例。我们将NCR低于10%的阅片者定义为能够正确诊断软件呈现的假阳性结果的阅片者。

结果

msAI软件显著提高了所有阅片者的病变定位分数(LLF)(0.74对0.82,p<0.01);FOM未提高(0.76对0.78,p = 0.45)。在基于病变大小的亚组分析中,即使对于小于6mm的病变,人工智能软件也显著提高了LLF(0.40对0.53,p<0.01),而FOM(0.63对0.66,p = 0.51)无显著差异。在10名NCR低于10%的阅片者中,软件不仅使LLF显著提高,FOM也显著提高(LLF 0.77对0.82,FOM 0.79对0.84,均p<0.01)。

结论

msAI软件提高了HBP图像上小肝脏病变的可检测性,尤其是在其结果得到正确评估时。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验