文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

比较胸腰椎椎体强度的线性和非线性有限元模型:来自密度校准计算机断层扫描的基准。

Comparing linear and nonlinear finite element models of vertebral strength across the thoracolumbar spine: a benchmark from density-calibrated computed tomography.

作者信息

Walle Matthias, Matheson Bryn E, Boyd Steven K

机构信息

McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, T2N 4Z6, Canada.

Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.

出版信息

Gigascience. 2025 Jan 6;14. doi: 10.1093/gigascience/giaf094.


DOI:10.1093/gigascience/giaf094
PMID:40880132
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12395960/
Abstract

BACKGROUND: Opportunistic assessment of vertebral strength from clinical computed tomography (CT) scans holds substantial promise for fracture risk stratification, yet variability in calibration methods and finite element (FE) modeling approaches has led to limited comparability across studies. In this work, we provide a publicly available benchmark dataset that supports standardized biomechanical analysis of the thoracic and lumbar spine using density-calibrated CT data. We extended the VerSe 2019 dataset to include phantomless quantitative CT calibration, automated vertebral substructure segmentation, and vertebral strength estimates derived from both linear and nonlinear FE models. The cohort comprises 141 patients scanned across 5 CT systems, including contrast-enhanced protocols. RESULTS: Phantomless calibration was performed using automatically segmented tissue references and validated against synchronous calibration phantoms in 17 scans. To evaluate model performance, we implemented a nonlinear elastoplastic FE model and compared it to 2 linear estimates. A displacement-calibrated linear model (0.2% axial strain) demonstrated excellent agreement with nonlinear failure loads (R = 0.96; mean difference = -0.07 kN), while a stiffness-based approach showed similarly strong correlation (R = 0.92). We evaluated vertebral strength at all thoracic and lumbar levels, enabling level-wise normalization and comparison. Strength ratios revealed consistent anatomical trends and identified T12 and T9 as reliable alternatives to L1 for opportunistic screening and model standardization. CONCLUSIONS: All calibrated scans, segmentations, software, and modeling outputs are publicly released, providing a benchmark resource for validation and development of FE models, radiomics tools, and other quantitative imaging applications in musculoskeletal research.

摘要

背景:通过临床计算机断层扫描(CT)对椎体强度进行机会性评估在骨折风险分层方面具有巨大潜力,但校准方法和有限元(FE)建模方法的差异导致各研究之间的可比性有限。在这项工作中,我们提供了一个公开可用的基准数据集,该数据集支持使用密度校准的CT数据对胸腰椎进行标准化生物力学分析。我们扩展了VerSe 2019数据集,以包括无体模定量CT校准、自动椎体子结构分割以及从线性和非线性FE模型得出的椎体强度估计值。该队列包括在5个CT系统上扫描的141名患者,包括增强扫描方案。 结果:使用自动分割的组织参考进行无体模校准,并在17次扫描中与同步校准体模进行验证。为了评估模型性能,我们实施了一个非线性弹塑性FE模型,并将其与2种线性估计值进行比较。一个位移校准的线性模型(轴向应变0.2%)与非线性破坏载荷显示出极好的一致性(R = 0.96;平均差异 = -0.07 kN),而基于刚度的方法显示出同样强的相关性(R = 0.92)。我们评估了所有胸腰椎水平的椎体强度,实现了逐水平归一化和比较。强度比揭示了一致的解剖学趋势,并确定T12和T9是用于机会性筛查和模型标准化的L1的可靠替代水平。 结论:所有校准扫描、分割、软件和建模输出均已公开发布,为肌肉骨骼研究中FE模型、放射组学工具和其他定量成像应用的验证和开发提供了一个基准资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dd8/12395960/06e9b77e7011/giaf094fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dd8/12395960/b6417cd412e7/giaf094fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dd8/12395960/d17067cd569d/giaf094fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dd8/12395960/6b2f46a153b6/giaf094fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dd8/12395960/a11baf14b13b/giaf094fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dd8/12395960/b20bc41e4bc7/giaf094fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dd8/12395960/06e9b77e7011/giaf094fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dd8/12395960/b6417cd412e7/giaf094fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dd8/12395960/d17067cd569d/giaf094fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dd8/12395960/6b2f46a153b6/giaf094fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dd8/12395960/a11baf14b13b/giaf094fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dd8/12395960/b20bc41e4bc7/giaf094fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5dd8/12395960/06e9b77e7011/giaf094fig6.jpg

相似文献

[1]
Comparing linear and nonlinear finite element models of vertebral strength across the thoracolumbar spine: a benchmark from density-calibrated computed tomography.

Gigascience. 2025-1-6

[2]
Assessing the biomechanics of scheuermann's kyphosis affected thoracolumbar spine in forward flexion at the tissue-level using a finite element model.

Sci Rep. 2025-7-28

[3]
Finite element modeling of the human thoracolumbar spine.

Spine (Phila Pa 1976). 2003-3-15

[4]
Finite element analysis of short-segment fixation combined with expandable polyetheretherketone vertebral body replacement in osteoporotic vertebrae.

BMC Musculoskelet Disord. 2025-8-20

[5]
Generalizable model to predict new or progressing compression fractures in tumor-infiltrated thoracolumbar vertebrae in an all-comer population.

J Neurosurg Spine. 2025-6-20

[6]
Can Multi-Vertebral CT-Based Finite Element Models Accurately Predict Strains? An In Vitro Validation Study.

Int J Numer Method Biomed Eng. 2025-8

[7]
Artificial intelligence image analysis for Hounsfield units in preoperative thoracolumbar CT scans: an automated screening for osteoporosis in patients undergoing spine surgery.

J Neurosurg Spine. 2025-4-18

[8]
Chest CT-based automated vertebral fracture assessment using artificial intelligence and morphologic features.

Med Phys. 2024-6

[9]
Do Hounsfield Units From Intraoperative CT Scans Correlate With Preoperative Values?

Clin Orthop Relat Res. 2024-10-1

[10]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

本文引用的文献

[1]
Establishing error bounds for internal calibration of quantitative computed tomography.

Med Eng Phys. 2024-2

[2]
Postmenopausal Osteoporosis.

N Engl J Med. 2023-11-23

[3]
TotalSegmentator: Robust Segmentation of 104 Anatomic Structures in CT Images.

Radiol Artif Intell. 2023-7-5

[4]
Addressing Challenges of Opportunistic Computed Tomography Bone Mineral Density Analysis.

Diagnostics (Basel). 2023-8-2

[5]
Opportunistic Screening Techniques for Analysis of CT Scans.

Curr Osteoporos Rep. 2023-2

[6]
Effects of four-year cyclic versus two-year daily teriparatide treatment on volumetric bone density and bone strength in postmenopausal women with osteoporosis.

Bone. 2023-2

[7]
Increased risks of vertebral fracture and reoperation in primary spinal fusion patients who test positive for osteoporosis by Biomechanical Computed Tomography analysis.

Spine J. 2023-3

[8]
Internal calibration for opportunistic computed tomography muscle density analysis.

PLoS One. 2022

[9]
A Review of CT-Based Fracture Risk Assessment with Finite Element Modeling and Machine Learning.

Curr Osteoporos Rep. 2022-10

[10]
Development and validation of a machine learning-derived radiomics model for diagnosis of osteoporosis and osteopenia using quantitative computed tomography.

BMC Med Imaging. 2022-8-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索