Walle Matthias, Matheson Bryn E, Boyd Steven K
McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, T2N 4Z6, Canada.
Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada.
Gigascience. 2025 Jan 6;14. doi: 10.1093/gigascience/giaf094.
BACKGROUND: Opportunistic assessment of vertebral strength from clinical computed tomography (CT) scans holds substantial promise for fracture risk stratification, yet variability in calibration methods and finite element (FE) modeling approaches has led to limited comparability across studies. In this work, we provide a publicly available benchmark dataset that supports standardized biomechanical analysis of the thoracic and lumbar spine using density-calibrated CT data. We extended the VerSe 2019 dataset to include phantomless quantitative CT calibration, automated vertebral substructure segmentation, and vertebral strength estimates derived from both linear and nonlinear FE models. The cohort comprises 141 patients scanned across 5 CT systems, including contrast-enhanced protocols. RESULTS: Phantomless calibration was performed using automatically segmented tissue references and validated against synchronous calibration phantoms in 17 scans. To evaluate model performance, we implemented a nonlinear elastoplastic FE model and compared it to 2 linear estimates. A displacement-calibrated linear model (0.2% axial strain) demonstrated excellent agreement with nonlinear failure loads (R = 0.96; mean difference = -0.07 kN), while a stiffness-based approach showed similarly strong correlation (R = 0.92). We evaluated vertebral strength at all thoracic and lumbar levels, enabling level-wise normalization and comparison. Strength ratios revealed consistent anatomical trends and identified T12 and T9 as reliable alternatives to L1 for opportunistic screening and model standardization. CONCLUSIONS: All calibrated scans, segmentations, software, and modeling outputs are publicly released, providing a benchmark resource for validation and development of FE models, radiomics tools, and other quantitative imaging applications in musculoskeletal research.
背景:通过临床计算机断层扫描(CT)对椎体强度进行机会性评估在骨折风险分层方面具有巨大潜力,但校准方法和有限元(FE)建模方法的差异导致各研究之间的可比性有限。在这项工作中,我们提供了一个公开可用的基准数据集,该数据集支持使用密度校准的CT数据对胸腰椎进行标准化生物力学分析。我们扩展了VerSe 2019数据集,以包括无体模定量CT校准、自动椎体子结构分割以及从线性和非线性FE模型得出的椎体强度估计值。该队列包括在5个CT系统上扫描的141名患者,包括增强扫描方案。 结果:使用自动分割的组织参考进行无体模校准,并在17次扫描中与同步校准体模进行验证。为了评估模型性能,我们实施了一个非线性弹塑性FE模型,并将其与2种线性估计值进行比较。一个位移校准的线性模型(轴向应变0.2%)与非线性破坏载荷显示出极好的一致性(R = 0.96;平均差异 = -0.07 kN),而基于刚度的方法显示出同样强的相关性(R = 0.92)。我们评估了所有胸腰椎水平的椎体强度,实现了逐水平归一化和比较。强度比揭示了一致的解剖学趋势,并确定T12和T9是用于机会性筛查和模型标准化的L1的可靠替代水平。 结论:所有校准扫描、分割、软件和建模输出均已公开发布,为肌肉骨骼研究中FE模型、放射组学工具和其他定量成像应用的验证和开发提供了一个基准资源。
Spine (Phila Pa 1976). 2003-3-15
Int J Numer Method Biomed Eng. 2025-8
Clin Orthop Relat Res. 2024-10-1
N Engl J Med. 2023-11-23
Radiol Artif Intell. 2023-7-5
Diagnostics (Basel). 2023-8-2
Curr Osteoporos Rep. 2023-2
Curr Osteoporos Rep. 2022-10