Suppr超能文献

基于组合神经网络与模糊逻辑的无人机混合自适应PID控制策略

Hybrid adaptive PID control strategy for UAVs using combined neural networks and fuzzy logic.

作者信息

Madebo Nigatu Wanore

机构信息

Information Network Security Administration (INSA), Aerospace Division, Addis Ababa, Ethiopia.

出版信息

PLoS One. 2025 Aug 29;20(8):e0331036. doi: 10.1371/journal.pone.0331036. eCollection 2025.

Abstract

This paper presents a novel hybrid combined neural network and fuzzy logic adaptive proportional, integral, and derivative(NNPID+FPID) control strategy that integrates neural networks and fuzzy logic for optimizing Unmanned Aerial Vehicle(UAV) dynamics by tuning the gains of a PID controller. The proposed approach leverages the strengths of each technique by applying neural networks to fine-tune the y and ψ states, while fuzzy logic enhances the performance of x, z, ϕ, and θ dynamics. A single-layer neural network with 10 hidden neurons is utilized to adjust PID gains for the y and ψ states using proportional, integral, and derivative errors ([Formula: see text]) as inputs. The weights are updated through a gradient descent algorithm minimizing the mean squared error, with a nonlinear sigmoid activation function ensuring adaptability. Concurrently, fuzzy logic employs heuristic rules to dynamically tune PID gains for the remaining states, based on input errors and their derivatives. Membership functions map inputs to gains to ensure real-time adaptability. The hybrid method outperforms standalone neural network(NNPID) and fuzzy logic(FPID) approaches by significantly improving trajectory tracking performance and overall UAV control efficiency. This work demonstrates the effectiveness of combining neural networks and fuzzy logic to address the multi-dimensional control challenges of UAV systems.

摘要

本文提出了一种新颖的混合神经网络与模糊逻辑自适应比例、积分和微分(NNPID+FPID)控制策略,该策略通过调整PID控制器的增益,将神经网络和模糊逻辑相结合,以优化无人机(UAV)动力学。所提出的方法通过应用神经网络对y和ψ状态进行微调,同时利用模糊逻辑提高x、z、ϕ和θ动力学的性能,从而发挥了每种技术的优势。利用一个具有10个隐藏神经元的单层神经网络,以比例、积分和微分误差([公式:见正文])作为输入来调整y和ψ状态的PID增益。通过梯度下降算法更新权重,以最小化均方误差,采用非线性Sigmoid激活函数确保适应性。同时,模糊逻辑采用启发式规则,根据输入误差及其导数动态调整其余状态的PID增益。隶属函数将输入映射到增益,以确保实时适应性。该混合方法通过显著提高轨迹跟踪性能和整体无人机控制效率,优于独立的神经网络(NNPID)和模糊逻辑(FPID)方法。这项工作证明了结合神经网络和模糊逻辑来应对无人机系统多维控制挑战的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1da8/12396714/837c733f60bd/pone.0331036.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验