Yu Zhiyong, Yao Qing, An Wei, Xu Hangjun, Su Jiaqi, Wang Juan, Zhang Ying, Jin Huile, Feng Yonggang, Huang Xiaoqing
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
CoKey Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, China.
Sci Adv. 2025 Aug 29;11(35):eady4981. doi: 10.1126/sciadv.ady4981.
Electrocatalytic CO reduction (ECR) to formic acid faces challenges in separating and purifying a formate-electrolyte mixture. In situ utilization of this mixture presents a promising yet underexplored solution. Here, we report the synthesis of BiPdTe nanocrystals (NCs) via a microwave-assisted cation topological exchange approach, enabling the precise tuning of surface oxygen affinities to simultaneously optimize the ECR and catalytic transfer hydrogenation (CTH) of phenol. Optimized BiPdTe NCs achieve a 92% formate Faradaic efficiency at -0.9 volts versus reversible hydrogen electrode and a production rate of 860 millimoles per hour per gram of catalyst at 100 milliamperes per square centimeter. This formate-electrolyte mixture serves as an effective hydrogen donor, enabling 98% selectivity toward cyclohexanone in phenol hydrogenation. Mechanistic studies show uniformly dispersed Bi sites create an oxygen affinity gradient, enhancing *OCHO adsorption for formate production and promoting noncoplanar phenol adsorption for selective cyclohexanone formation. This work pioneers synergistic ECR-CTH integration, establishing an innovative CO valorization and biomass upgrading strategy.
电催化一氧化碳还原(ECR)生成甲酸在分离和纯化甲酸盐 - 电解质混合物方面面临挑战。原位利用这种混合物是一种有前景但尚未充分探索的解决方案。在此,我们报告了通过微波辅助阳离子拓扑交换方法合成BiPdTe纳米晶体(NCs),能够精确调节表面氧亲和力,以同时优化苯酚的ECR和催化转移氢化(CTH)。优化后的BiPdTe NCs在相对于可逆氢电极 -0.9伏时实现了92%的甲酸盐法拉第效率,在每平方厘米100毫安时,每克催化剂的生产率为每小时860毫摩尔。这种甲酸盐 - 电解质混合物作为一种有效的氢供体,在苯酚加氢反应中对环己酮的选择性达到98%。机理研究表明,均匀分散的Bi位点产生氧亲和力梯度,增强了用于甲酸盐生成的*OCHO吸附,并促进了用于选择性环己酮形成的非共面苯酚吸附。这项工作开创了协同ECR - CTH集成,建立了一种创新的CO增值和生物质升级策略。