Li Xuan, Rytkin Eric, Zhao Qinai, Bhat Pavan, Pfenniger Anna, Yin Liting, Huang Xinghao, Yang Liheng, Yang Bohan, Burrell Amy, Mikhailov Aleksei, Arora Rishi, Efimov Igor R, Zhao Hangbo
Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA.
Department of Biomedical Engineering, Northwestern University, Chicago, IL 60611, USA.
Sci Adv. 2025 Aug 29;11(35):eadw3044. doi: 10.1126/sciadv.adw3044.
Liquid metal-based stretchable electronics offer high electrical performance and seamless integration with deformable systems but face challenges in achieving scalable, high-resolution patterning. In this work, we present a method for micropatterning liquid metal particle (LMP) films with feature sizes as small as 5 micrometers by integrating electrostatically enabled colloidal self-assembly and microtransfer printing. The resulting cold-welded LMP micropatterns exhibit exceptional electromechanical properties, high conductivity (2.4 × 10 siemens per meter), stretchability (more than 1200%), and strain- and pressure-insensitive resistance, owing to their multiscale and dynamic morphologies. Demonstrations in highly stretchable strain sensors and cardiac mapping devices highlight the capabilities of this method for creating high-performance, highly stretchable electronic systems. Notably, balloon catheter-integrated LMP microelectrode arrays show low impedance under extreme deformations and enable high-resolution endocardial electrogram mapping inside the human heart. This method expands the potential of liquid metal-based stretchable electronics for a wide range of applications, including implantable biomedical devices and soft robotics.
基于液态金属的可拉伸电子产品具有高电气性能,且能与可变形系统无缝集成,但在实现可扩展的高分辨率图案化方面面临挑战。在这项工作中,我们提出了一种通过整合静电驱动的胶体自组装和微转移印刷来对特征尺寸小至5微米的液态金属颗粒(LMP)薄膜进行微图案化的方法。由此产生的冷焊LMP微图案由于其多尺度和动态形态而表现出优异的机电性能、高电导率(2.4×10西门子每米)、可拉伸性(超过1200%)以及对应变和压力不敏感的电阻。在高可拉伸应变传感器和心脏测绘设备中的演示突出了该方法在创建高性能、高可拉伸电子系统方面的能力。值得注意的是,集成在球囊导管上的LMP微电极阵列在极端变形下显示出低阻抗,并能够在人体心脏内部进行高分辨率的心内膜电图测绘。该方法扩展了基于液态金属的可拉伸电子产品在包括可植入生物医学设备和软机器人等广泛应用中的潜力。