Suppr超能文献

用于脑-体回路的多功能生物电子学。

Multifunctional bioelectronics for brain-body circuits.

作者信息

Sahasrabudhe Atharva, Cea Claudia, Anikeeva Polina

机构信息

K. Lisa Yang Brain-Body Center, Massachusetts Institute of Technology.

Research Laboratory of Electronics, Massachusetts Institute of Technology.

出版信息

Nat Rev Bioeng. 2025 Jun;3(6):465-484. doi: 10.1038/s44222-025-00289-3. Epub 2025 Mar 27.

Abstract

The brain continuously receives, integrates, and responds to an influx of sensory signals emerging from the internal organs. This is mediated not only through direct neuronal connections defined by the peripheral nervous system, but also endocrine, humoral, metabolic, and immune pathways. Despite being predominantly imperceptible, the complex brain-body cross-talk is essential to maintaining physiological homeostasis. Moreover, it is increasingly recognized to play a critical role in cognitive and behavioral functions as well as in disorders of the nervous system. The functional and anatomical diversity of brain-body pathways necessitates the development of multifunctional implantable neurotechnologies that can facilitate causal studies during behavior. Although ubiquitous in studies of brain function, electrical, optical, and chemical interrogation of organ-brain circuits remains a challenge. In this review, we discuss recent developments in multifunctional implantable neurotechnologies, highlighting material selection, device architectures, integration challenges, and power and data transfer approaches necessary to establish robust bioelectronic interfaces to brain and peripheral organs suitable for long-term studies of brain-body signaling.

摘要

大脑持续接收、整合并响应来自内脏的大量感觉信号。这不仅通过外周神经系统定义的直接神经元连接介导,还通过内分泌、体液、代谢和免疫途径介导。尽管这种复杂的脑-体交互作用大多难以察觉,但对于维持生理稳态至关重要。此外,人们越来越认识到它在认知和行为功能以及神经系统疾病中起着关键作用。脑-体通路的功能和解剖学多样性需要开发多功能可植入神经技术,以便在行为过程中促进因果研究。尽管在脑功能研究中很普遍,但对器官-脑回路进行电学、光学和化学检测仍然是一个挑战。在这篇综述中,我们讨论了多功能可植入神经技术的最新进展,重点介绍了材料选择、设备架构、整合挑战以及建立适用于脑-体信号长期研究的强大脑和外周器官生物电子接口所需的电源和数据传输方法。

引用本文的文献

1
An ultrasound-scanning light source.
Res Sq. 2025 Jun 19:rs.3.rs-6773130. doi: 10.21203/rs.3.rs-6773130/v1.

本文引用的文献

1
Neuromodulation with chemicals: Opportunities and challenges.
Fundam Res. 2024 Apr 12;5(1):55-62. doi: 10.1016/j.fmre.2024.04.010. eCollection 2025 Jan.
2
Gut Analysis Toolbox - automating quantitative analysis of enteric neurons.
J Cell Sci. 2024 Oct 15;137(20). doi: 10.1242/jcs.261950. Epub 2024 Oct 30.
3
Lead-free dual-frequency ultrasound implants for wireless, biphasic deep brain stimulation.
Nat Commun. 2024 May 13;15(1):4017. doi: 10.1038/s41467-024-48250-z.
4
Ultraflexible electrodes for recording neural activity in the mouse spinal cord during motor behavior.
Cell Rep. 2024 May 28;43(5):114199. doi: 10.1016/j.celrep.2024.114199. Epub 2024 May 9.
5
An electroencephalogram microdisplay to visualize neuronal activity on the brain surface.
Sci Transl Med. 2024 Apr 24;16(744):eadj7257. doi: 10.1126/scitranslmed.adj7257.
6
High-Density, Conformable Conducting Polymer-Based Implantable Neural Probes for the Developing Brain.
Adv Healthc Mater. 2024 Sep;13(24):e2304164. doi: 10.1002/adhm.202304164. Epub 2024 Apr 19.
7
Spike sorting with Kilosort4.
Nat Methods. 2024 May;21(5):914-921. doi: 10.1038/s41592-024-02232-7. Epub 2024 Apr 8.
8
A wireless, implantable bioelectronic system for monitoring urinary bladder function following surgical recovery.
Proc Natl Acad Sci U S A. 2024 Apr 2;121(14):e2400868121. doi: 10.1073/pnas.2400868121. Epub 2024 Mar 28.
9
An ingestible self-propelling device for intestinal reanimation.
Sci Robot. 2024 Feb 28;9(87):eadh8170. doi: 10.1126/scirobotics.adh8170.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验