文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

推进肿瘤预测:整合临床和影像组学模型以优化肝细胞癌经动脉化疗栓塞术的疗效

Advancing predictive oncology: Integrating clinical and radiomic models to optimize transarterial chemoembolization outcomes in hepatocellular carcinoma.

作者信息

Baddam Sujatha

机构信息

Department of Internal Medicine, Huntsville Hospital, Huntsville, AL 35801, United States.

出版信息

World J Clin Cases. 2025 Oct 6;13(28):109397. doi: 10.12998/wjcc.v13.i28.109397.


DOI:10.12998/wjcc.v13.i28.109397
PMID:40881015
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12362475/
Abstract

This article discusses the innovative use of computed tomography radiomics combined with clinical factors to predict treatment response to first-line transarterial chemoembolization in hepatocellular carcinoma. Zhao developed a robust predictive model demonstrating high accuracy (area under the curve 0.92 in the training cohort) by integrating venous phase radiomic features with alpha-fetoprotein levels. This noninvasive approach enables early identification of patients unlikely to benefit from transarterial chemoembolization, allowing a timely transition to alternative therapies such as targeted agents or immunotherapy. Such precision strategies may improve clinical outcomes, optimize resource utilization, and increase survival in advanced hepatocellular carcinoma management. Future studies should emphasize external validation and broader clinical adoption.

摘要

本文讨论了计算机断层扫描放射组学与临床因素相结合在预测肝细胞癌一线经动脉化疗栓塞治疗反应中的创新应用。赵开发了一种强大的预测模型,通过整合静脉期放射组学特征和甲胎蛋白水平,在训练队列中显示出高准确性(曲线下面积为0.92)。这种非侵入性方法能够早期识别不太可能从经动脉化疗栓塞中获益的患者,从而及时转向靶向药物或免疫疗法等替代疗法。这种精准策略可能改善临床结果、优化资源利用并提高晚期肝细胞癌管理中的生存率。未来的研究应强调外部验证和更广泛的临床应用。

相似文献

[1]
Advancing predictive oncology: Integrating clinical and radiomic models to optimize transarterial chemoembolization outcomes in hepatocellular carcinoma.

World J Clin Cases. 2025-10-6

[2]
Prediction of the efficacy of first transarterial chemoembolization for advanced hepatocellular carcinoma a clinical-radiomics model.

World J Clin Cases. 2025-8-16

[3]
Artificial intelligence for multi-time-point arterial phase contrast-enhanced MRI profiling to predict prognosis after transarterial chemoembolization in hepatocellular carcinoma.

Radiol Med. 2025-7-24

[4]
18F-FDG PET/CT-based deep radiomic models for enhancing chemotherapy response prediction in breast cancer.

Med Oncol. 2025-8-11

[5]
Radiomic Analysis of Contrast-Enhanced CT Predicts Glypican 3-Positive Hepatocellular Carcinoma.

Curr Med Imaging. 2024-3-7

[6]
Machine learning based radiomic models outperform clinical biomarkers in predicting outcomes after immunotherapy for hepatocellular carcinoma.

J Hepatol. 2025-4-17

[7]
Radiomics as a tool for prognostic prediction in transarterial chemoembolization for hepatocellular carcinoma: a systematic review and meta-analysis.

Radiol Med. 2024-8

[8]
Prediction of treatment response and outcome of transarterial chemoembolization in patients with hepatocellular carcinoma using artificial intelligence: A systematic review of efficacy.

Eur J Radiol. 2025-3

[9]
Computed tomography-based radiomics predicts prognostic and treatment-related levels of immune infiltration in the immune microenvironment of clear cell renal cell carcinoma.

BMC Med Imaging. 2025-7-1

[10]
External beam radiotherapy for unresectable hepatocellular carcinoma.

Cochrane Database Syst Rev. 2017-3-7

本文引用的文献

[1]
Prediction of the efficacy of first transarterial chemoembolization for advanced hepatocellular carcinoma a clinical-radiomics model.

World J Clin Cases. 2025-8-16

[2]
Computed tomography radiomic features and clinical factors predicting the response to first transarterial chemoembolization in intermediate-stage hepatocellular carcinoma.

Hepatobiliary Pancreat Dis Int. 2024-8

[3]
CT texture analysis in predicting treatment response and survival in patients with hepatocellular carcinoma treated with transarterial chemoembolization using random forest models.

BMC Cancer. 2023-3-3

[4]
Transarterial Chemoembolization for Hepatocellular Carcinoma: Why, When, How?

J Pers Med. 2022-3-10

[5]
Hepatocellular Carcinoma Drug-Eluting Bead Transarterial Chemoembolization (DEB-TACE): Outcome Analysis Using a Model Based On Pre-Treatment CT Texture Features.

Diagnostics (Basel). 2021-5-26

[6]
Development of a computed tomography-based radiomics nomogram for prediction of transarterial chemoembolization refractoriness in hepatocellular carcinoma.

World J Gastroenterol. 2021-1-14

[7]
Response prediction of hepatocellular carcinoma undergoing transcatheter arterial chemoembolization: unlocking the potential of CT texture analysis through nested decision tree models.

Eur Radiol. 2021-6

[8]
A machine learning model to predict hepatocellular carcinoma response to transcatheter arterial chemoembolization.

Radiol Artif Intell. 2019-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索