Baddam Sujatha
Department of Internal Medicine, Huntsville Hospital, Huntsville, AL 35801, United States.
World J Clin Cases. 2025 Oct 6;13(28):109397. doi: 10.12998/wjcc.v13.i28.109397.
This article discusses the innovative use of computed tomography radiomics combined with clinical factors to predict treatment response to first-line transarterial chemoembolization in hepatocellular carcinoma. Zhao developed a robust predictive model demonstrating high accuracy (area under the curve 0.92 in the training cohort) by integrating venous phase radiomic features with alpha-fetoprotein levels. This noninvasive approach enables early identification of patients unlikely to benefit from transarterial chemoembolization, allowing a timely transition to alternative therapies such as targeted agents or immunotherapy. Such precision strategies may improve clinical outcomes, optimize resource utilization, and increase survival in advanced hepatocellular carcinoma management. Future studies should emphasize external validation and broader clinical adoption.
本文讨论了计算机断层扫描放射组学与临床因素相结合在预测肝细胞癌一线经动脉化疗栓塞治疗反应中的创新应用。赵开发了一种强大的预测模型,通过整合静脉期放射组学特征和甲胎蛋白水平,在训练队列中显示出高准确性(曲线下面积为0.92)。这种非侵入性方法能够早期识别不太可能从经动脉化疗栓塞中获益的患者,从而及时转向靶向药物或免疫疗法等替代疗法。这种精准策略可能改善临床结果、优化资源利用并提高晚期肝细胞癌管理中的生存率。未来的研究应强调外部验证和更广泛的临床应用。
Curr Med Imaging. 2024-3-7
Cochrane Database Syst Rev. 2017-3-7
J Pers Med. 2022-3-10