Wu Mingzheng, Zhang Kaiqing, Fok Priscilla J Y, Zhang Haohui, Efimov Andrew I, Wang Yue, Feng Jingyuan, Li Shupeng, Gu Jianyu, Lu Xinyue, Hintermueller Dane, Zeng Liangsong, Zhang Jinglan, Waters Emily A, Yang Tianyu, Liu Jiaqi, Wang Glingna, Lv Zengyao, Wei Yuanting, Yang Yiyuan, Haney Chad R, Kozorovitskiy Yevgenia, Avila Raudel, Vázquez-Guardado Abraham, Huang Yonggang, Rogers John A
Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA.
Equal Contribution.
Device. 2025 Aug 21. doi: 10.1016/j.device.2025.100898.
Miniaturized implantable optoelectronic technologies for in vivo biomedical applications are gaining interest, but require strict thermal management for safe operation. Here, we introduce a comprehensive framework combining analytical solutions and numerical modeling to estimate and manage thermal effects of optoelectronic devices. We propose Green's functions to analytically solve temperature distributions in tissue from a point source with coupled thermal-optical power, capturing the influence of critical tissue properties and spatiotemporal parameters. Integrating the Green's function derives temperature distributions for sources with definable geometry. Numerical modeling defines scaling factors to account for variations in radiation patterns and material designs, enabling direct performance comparisons across systems. Guided by this framework, iterative optimization of a filamentary optogenetic probe for deep brain stimulation significantly reduces thermal loads while preserving typical behaviors in freely moving mice. Experimental validation through in vitro and in vivo characterization demonstrates scalable strategies to overcome thermal challenges in advanced bio-optoelectronic systems.
用于体内生物医学应用的小型化植入式光电子技术正引起人们的兴趣,但为了安全运行需要严格的热管理。在此,我们引入一个结合解析解和数值建模的综合框架,以估计和管理光电器件的热效应。我们提出格林函数,通过耦合热光功率从点源解析求解组织中的温度分布,捕捉关键组织特性和时空参数的影响。对格林函数进行积分可得出具有可定义几何形状的源的温度分布。数值建模定义缩放因子以考虑辐射模式和材料设计的变化,从而能够对不同系统进行直接性能比较。在这个框架的指导下,对用于深部脑刺激的丝状光遗传学探针进行迭代优化,可在保持自由活动小鼠典型行为的同时显著降低热负荷。通过体外和体内表征进行的实验验证展示了在先进生物光电子系统中克服热挑战的可扩展策略。