Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA; Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Australia.
Biosens Bioelectron. 2024 Aug 15;258:116298. doi: 10.1016/j.bios.2024.116298. Epub 2024 Apr 16.
Wireless activation of the enteric nervous system (ENS) in freely moving animals with implantable optogenetic devices offers a unique and exciting opportunity to selectively control gastrointestinal (GI) transit in vivo, including the gut-brain axis. Programmed delivery of light to targeted locations in the GI-tract, however, poses many challenges not encountered within the central nervous system (CNS). We report here the development of a fully implantable, battery-free wireless device specifically designed for optogenetic control of the GI-tract, capable of generating sufficient light over large areas to robustly activate the ENS, potently inducing colonic motility ex vivo and increased propulsion in vivo. Use in in vivo studies reveals unique stimulation patterns that increase expulsion of colonic content, likely mediated in part by activation of an extrinsic brain-gut motor pathway, via pelvic nerves. This technology overcomes major limitations of conventional wireless optogenetic hardware designed for the CNS, providing targeted control of specific neurochemical classes of neurons in the ENS and brain-gut axis, for direct modulation of GI-transit and associated behaviours in freely moving animals.
使用可植入的光遗传学设备对自由活动动物的肠神经系统(ENS)进行无线激活,为选择性地控制体内胃肠道(GI)传输提供了独特而令人兴奋的机会,包括肠道-大脑轴。然而,将光有针对性地递送到 GI 道的目标位置,提出了许多在中枢神经系统(CNS)中不会遇到的挑战。我们在这里报告了一种完全可植入、无电池的无线设备的开发,该设备专门用于 GI 道的光遗传学控制,能够在大面积产生足够的光来强大地激活 ENS,有力地诱导离体结肠蠕动,并在体内增加推进力。在体内研究中的应用揭示了独特的刺激模式,增加了结肠内容物的排出,这可能部分是通过激活骨盆神经的外在脑-肠运动通路来介导的。这项技术克服了传统无线光遗传学硬件为 CNS 设计的主要限制,提供了对 ENS 和脑-肠轴中特定神经化学类别的神经元的靶向控制,用于直接调节自由活动动物的 GI 传输和相关行为。