文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用MaskCNN和航空影像在OpenStreetMap中进行自动化路面分类。

Automated road surface classification in OpenStreetMap using MaskCNN and aerial imagery.

作者信息

Parvathi R, Pattabiraman V, Saxena Nancy, Mishra Aakarsh, Mishra Utkarsh, Pandey Ansh

机构信息

School of Computer Science and Engineering, Vellore Institute of Technology - Chennai Campus, Chennai, Tamil Nadu, India.

出版信息

Front Big Data. 2025 Aug 13;8:1657320. doi: 10.3389/fdata.2025.1657320. eCollection 2025.


DOI:10.3389/fdata.2025.1657320
PMID:40881822
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12382388/
Abstract

INTRODUCTION: OpenStreetMap (OSM) road surface data is critical for navigation, infrastructure monitoring, and urban planning but is often incomplete or inconsistent. This study addresses the need for automated validation and classification of road surfaces by leveraging high-resolution aerial imagery and deep learning techniques. METHODS: We propose a MaskCNN-based deep learning model enhanced with attention mechanisms and a hierarchical loss function to classify road surfaces into four types: asphalt, concrete, gravel, and dirt. The model uses NAIP (National Agriculture Imagery Program) aerial imagery aligned with OSM labels. Preprocessing includes georeferencing, data augmentation, label cleaning, and class balancing. The architecture comprises a ResNet-50 encoder with squeeze-and-excitation blocks and a U-Net-style decoder with spatial attention. Evaluation metrics include accuracy, mIoU, precision, recall, and F1-score. RESULTS: The proposed model achieved an overall accuracy of 92.3% and a mean Intersection over Union (mIoU) of 83.7%, outperforming baseline models such as SVM (81.2% accuracy), Random Forest (83.7%), and standard U-Net (89.6%). Class-wise performance showed high precision and recall even for challenging surface types like gravel and dirt. Comparative evaluations against state-of-the-art models (COANet, SA-UNet, MMFFNet) also confirmed superior performance. DISCUSSION: The results demonstrate that combining NAIP imagery with attention-guided CNN architectures and hierarchical loss functions significantly improves road surface classification. The model is robust across varied terrains and visual conditions and shows potential for real-world applications such as OSM data enhancement, infrastructure analysis, and autonomous navigation. Limitations include label noise in OSM and class imbalance, which can be addressed through future work involving semi-supervised learning and multimodal data integration.

摘要

引言:开放街道地图(OpenStreetMap,OSM)的路面数据对于导航、基础设施监测和城市规划至关重要,但往往不完整或不一致。本研究通过利用高分辨率航空影像和深度学习技术,满足了对路面进行自动验证和分类的需求。 方法:我们提出了一种基于MaskCNN的深度学习模型,该模型通过注意力机制和分层损失函数进行增强,以将路面分为四种类型:沥青、混凝土、砾石和土路。该模型使用与OSM标签对齐的国家农业影像计划(NAIP)航空影像。预处理包括地理配准、数据增强、标签清理和类别平衡。该架构包括一个带有挤压与激励模块的ResNet-50编码器和一个带有空间注意力的U-Net风格解码器。评估指标包括准确率、平均交并比(mIoU)、精确率、召回率和F1分数。 结果:所提出的模型实现了92.3%的总体准确率和83.7%的平均交并比,优于支持向量机(SVM,准确率81.2%)、随机森林(83.7%)和标准U-Net(89.6%)等基线模型。即使对于砾石和土路等具有挑战性的路面类型,按类别划分的性能也显示出高精度和召回率。与现有最先进模型(COANet、SA-UNet、MMFFNet)的比较评估也证实了其卓越性能。 讨论:结果表明,将NAIP影像与注意力引导的CNN架构和分层损失函数相结合,可显著提高路面分类效果。该模型在各种地形和视觉条件下都具有鲁棒性,并显示出在诸如OSM数据增强、基础设施分析和自主导航等实际应用中的潜力。局限性包括OSM中的标签噪声和类别不平衡,可通过未来涉及半监督学习和多模态数据集成的工作来解决。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/ba81ddb0fef2/fdata-08-1657320-g0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/6ad9a090a98c/fdata-08-1657320-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/e57615baa8f2/fdata-08-1657320-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/bc61b78dca89/fdata-08-1657320-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/b10a5b01ec36/fdata-08-1657320-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/41e5cbf85a8c/fdata-08-1657320-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/0a72c11a5cf0/fdata-08-1657320-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/79da57c743db/fdata-08-1657320-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/ec1234e02e55/fdata-08-1657320-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/2766d8de88dc/fdata-08-1657320-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/1acc866839f2/fdata-08-1657320-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/fddcbf3d4504/fdata-08-1657320-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/85204689f88d/fdata-08-1657320-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/df3011aeefc3/fdata-08-1657320-g0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/243047dc5686/fdata-08-1657320-g0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/ba81ddb0fef2/fdata-08-1657320-g0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/6ad9a090a98c/fdata-08-1657320-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/e57615baa8f2/fdata-08-1657320-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/bc61b78dca89/fdata-08-1657320-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/b10a5b01ec36/fdata-08-1657320-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/41e5cbf85a8c/fdata-08-1657320-g0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/0a72c11a5cf0/fdata-08-1657320-g0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/79da57c743db/fdata-08-1657320-g0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/ec1234e02e55/fdata-08-1657320-g0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/2766d8de88dc/fdata-08-1657320-g0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/1acc866839f2/fdata-08-1657320-g0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/fddcbf3d4504/fdata-08-1657320-g0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/85204689f88d/fdata-08-1657320-g0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/df3011aeefc3/fdata-08-1657320-g0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/243047dc5686/fdata-08-1657320-g0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2138/12382388/ba81ddb0fef2/fdata-08-1657320-g0015.jpg

相似文献

[1]
Automated road surface classification in OpenStreetMap using MaskCNN and aerial imagery.

Front Big Data. 2025-8-13

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Integrated neural network framework for multi-object detection and recognition using UAV imagery.

Front Neurorobot. 2025-7-30

[4]
CXR-MultiTaskNet a unified deep learning framework for joint disease localization and classification in chest radiographs.

Sci Rep. 2025-8-31

[5]
.

Int Ophthalmol. 2025-6-27

[6]
Leveraging a foundation model zoo for cell similarity search in oncological microscopy across devices.

Front Oncol. 2025-6-18

[7]
Automatic segmentation of chest X-ray images via deep-improved various U-Net techniques.

Digit Health. 2025-8-6

[8]
Short-Term Memory Impairment

2025-1

[9]
SODU2-NET: a novel deep learning-based approach for salient object detection utilizing U-NET.

PeerJ Comput Sci. 2025-5-19

[10]
Fine-Grained Classification of Pressure Ulcers and Incontinence-Associated Dermatitis Using Multimodal Deep Learning: Algorithm Development and Validation Study.

JMIR AI. 2025-5-1

本文引用的文献

[1]
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery.

IEEE Trans Image Process. 2021

[2]
Text Data Augmentation for Deep Learning.

J Big Data. 2021

[3]
Squeeze-and-Excitation Networks.

IEEE Trans Pattern Anal Mach Intell. 2020-8

[4]
Focal Loss for Dense Object Detection.

IEEE Trans Pattern Anal Mach Intell. 2020-2

[5]
Fully Convolutional Networks for Semantic Segmentation.

IEEE Trans Pattern Anal Mach Intell. 2016-5-24

[6]
Automatic early stopping using cross validation: quantifying the criteria.

Neural Netw. 1998-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索