Wu Alexander P, Singh Rohit, Walsh Christopher A, Berger Bonnie
Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA.
Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA.
Nat Commun. 2025 Aug 29;16(1):8096. doi: 10.1038/s41467-025-61337-5.
Genome-wide association studies (GWAS) identify numerous disease-linked genetic variants at noncoding genomic loci, yet therapeutic progress is hampered by the challenge of deciphering the regulatory roles of these loci in tissue-specific contexts. Single-cell multimodal assays that simultaneously profile chromatin accessibility and gene expression could predict tissue-specific causal links between noncoding loci and the genes they affect. However, current computational strategies either neglect the causal relationship between chromatin accessibility and transcription or lack variant-level precision, aggregating data across genomic ranges due to data sparsity. To address this, we introduce GrID-Net, a graph neural network approach that generalizes Granger causal inference to detect new causal locus-gene associations in graph-structured systems such as single-cell trajectories. Inspired by the principles of optical parallax, which reveals object depth from static snapshots, we hypothesize that causal mechanisms could be inferred from static single-cell snapshots by exploiting the time lag between epigenetic and transcriptional cell states, a concept we term "cell-state parallax." Applying GrID-Net to schizophrenia (SCZ) genetic variants, we increase variant coverage by 36% and uncovered noncoding mechanisms that dysregulate 132 genes, including key potassium transporters such as KCNG2 and SLC12A6. Furthermore, we discover evidence for the prominent role of neural transcription-factor binding disruptions in SCZ etiology. Our work not only provides a strategy for elucidating the tissue-specific impact of noncoding variants but also underscores the breakthrough potential of cell-state parallax in single-cell multiomics for discovering tissue-specific gene regulatory mechanisms.
全基因组关联研究(GWAS)在非编码基因组位点识别出众多与疾病相关的遗传变异,但由于难以在组织特异性背景下解读这些位点的调控作用,治疗进展受到阻碍。同时对染色质可及性和基因表达进行分析的单细胞多模态检测方法可以预测非编码位点与其所影响基因之间的组织特异性因果联系。然而,目前的计算策略要么忽略了染色质可及性与转录之间的因果关系,要么缺乏变异水平的精度,由于数据稀疏性而在基因组范围内聚合数据。为了解决这个问题,我们引入了GrID-Net,这是一种图神经网络方法,它将格兰杰因果推断进行了推广,以在诸如单细胞轨迹等图结构系统中检测新的因果位点-基因关联。受光学视差原理的启发,光学视差可从静态快照中揭示物体深度,我们假设可以通过利用表观遗传和转录细胞状态之间的时间滞后,从静态单细胞快照中推断因果机制,我们将这一概念称为“细胞状态视差”。将GrID-Net应用于精神分裂症(SCZ)遗传变异,我们将变异覆盖率提高了36%,并发现了失调132个基因的非编码机制,包括关键的钾转运体如KCNG2和SLC12A6。此外,我们发现了神经转录因子结合破坏在SCZ病因学中起重要作用的证据。我们的工作不仅提供了一种阐明非编码变异的组织特异性影响的策略,还强调了细胞状态视差在单细胞多组学中发现组织特异性基因调控机制方面的突破潜力。