Suppr超能文献

非参数单细胞多组学分析转录因子、靶基因和顺式调控区之间的三重关系。

Nonparametric single-cell multiomic characterization of trio relationships between transcription factors, target genes, and cis-regulatory regions.

机构信息

Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.

Curriculum in Bioinformatics and Computational Biology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA.

出版信息

Cell Syst. 2022 Sep 21;13(9):737-751.e4. doi: 10.1016/j.cels.2022.08.004. Epub 2022 Sep 1.

Abstract

The epigenetic control of gene expression is highly cell-type and context specific. Yet, despite its complexity, gene regulatory logic can be broken down into modular components consisting of a transcription factor (TF) activating or repressing the target gene expression through its binding to a cis-regulatory region. We propose a nonparametric approach, TRIPOD, to detect and characterize the three-way relationships between a TF, its target gene, and the accessibility of the TF's binding site using single-cell RNA and ATAC multiomic data. We apply TRIPOD to interrogate the cell-type-specific regulatory logic in peripheral blood mononuclear cells and contrast our results to detections from enhancer databases, cis-eQTL studies, ChIP-seq experiments, and TF knockdown/knockout studies. We then apply TRIPOD to mouse embryonic brain data and identify regulatory relationships, validated by ChIP-seq and PLAC-seq. Finally, we demonstrate TRIPOD on the SHARE-seq data of differentiating mouse hair follicle cells and identify lineage-specific regulation supported by histone marks and super-enhancer annotations. A record of this paper's transparent peer review process is included in the supplemental information.

摘要

基因表达的表观遗传控制具有高度的细胞类型和上下文特异性。然而,尽管其复杂性,基因调控逻辑可以分解为模块化组件,包括转录因子 (TF) 通过与其结合来激活或抑制靶基因表达的顺式调控区。我们提出了一种非参数方法 TRIPOD,用于使用单细胞 RNA 和 ATAC 多组学数据检测和表征 TF、其靶基因和 TF 结合位点可及性之间的三向关系。我们应用 TRIPOD 来探究外周血单核细胞中的细胞类型特异性调控逻辑,并将我们的结果与增强子数据库、顺式 eQTL 研究、ChIP-seq 实验和 TF 敲低/敲除研究的检测结果进行对比。然后,我们将 TRIPOD 应用于小鼠胚胎大脑数据,并通过 ChIP-seq 和 PLAC-seq 验证了调控关系。最后,我们在分化的小鼠毛囊细胞的 SHARE-seq 数据上演示了 TRIPOD,并通过组蛋白标记和超级增强子注释识别了支持谱系特异性调控的关系。本文的透明同行评审过程记录包含在补充信息中。

相似文献

2
The functional consequences of variation in transcription factor binding.转录因子结合变异的功能后果。
PLoS Genet. 2014 Mar 6;10(3):e1004226. doi: 10.1371/journal.pgen.1004226. eCollection 2014 Mar.

引用本文的文献

8
Single-cell omics: experimental workflow, data analyses and applications.单细胞组学:实验工作流程、数据分析及应用
Sci China Life Sci. 2025 Jan;68(1):5-102. doi: 10.1007/s11427-023-2561-0. Epub 2024 Jul 23.
10
Recent advances in exploring transcriptional regulatory landscape of crops.作物转录调控格局探索的最新进展。
Front Plant Sci. 2024 Jun 5;15:1421503. doi: 10.3389/fpls.2024.1421503. eCollection 2024.

本文引用的文献

1
Single-cell chromatin state analysis with Signac.使用 Signac 进行单细胞染色质状态分析。
Nat Methods. 2021 Nov;18(11):1333-1341. doi: 10.1038/s41592-021-01282-5. Epub 2021 Nov 1.
3
Molecular architecture of the developing mouse brain.发育中老鼠大脑的分子结构。
Nature. 2021 Aug;596(7870):92-96. doi: 10.1038/s41586-021-03775-x. Epub 2021 Jul 28.
4
Integrated analysis of multimodal single-cell data.多模态单细胞数据的综合分析。
Cell. 2021 Jun 24;184(13):3573-3587.e29. doi: 10.1016/j.cell.2021.04.048. Epub 2021 May 31.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验