Li Jun-Kang, Ma Jing-Jing, Chen Yu, Zhao Shu-Na, Song Shuyan, Zang Shuang-Quan
Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry and Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, P. R. China.
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
ACS Nano. 2025 Aug 30. doi: 10.1021/acsnano.5c11772.
Atomically precise Cu clusters with stabilized low-coordinated Cu species demonstrate promising deep CO reduction capability, although product selectivity requires enhancement. To address this, two Cu clusters, Cu(PPh)(PET) and [CuS(PPh)(PET)] (denoted as Cu and Cu, respectively) were constructed via ligand-mediated assembly of Cu triangular units. Both clusters effectively catalyze deep CO reduction, with CH as the dominant product (FE = 60.8 ± 1.6% at -1.4 V for Cu and 50.5 ± 4.3% at -1.5 V for Cu). Notably, CeO incorporation dramatically enhances CH selectivity, elevating FE to 78.5 ± 0.4% at -1.3 V for Cu/CeO and 64.3 ± 1.9% at -1.4 V for Cu/CeO. XAS and XPS analysis validate stabilized Cu species within Cu clusters under CORR, favoring *CO intermediate stabilization. Kinetic analysis identifies isolated Cu sites within Cu clusters as the active center for both CH and CH formation, mediating the hydrogenation reaction via the Langmuir-Hinshelwood mechanism while suppressing C-C coupling. Theoretical calculations elucidate that CeO facilitates water activation to generate abundant *H species, which subsequently migrate to sulfur sites in Cu clusters through a reverse hydrogen spillover mechanism. This synergistic process significantly accelerates *CO hydrogenation kinetics, thereby enhancing the CH selectivity.
具有稳定低配位铜物种的原子精确铜簇表现出有前景的深度一氧化碳还原能力,尽管产物选择性需要提高。为了解决这个问题,通过铜三角单元的配体介导组装构建了两个铜簇,Cu(PPh)(PET) 和 [CuS(PPh)(PET)](分别表示为Cu和Cu)。两个簇都能有效催化深度一氧化碳还原,甲烷是主要产物(在-1.4 V时,Cu的法拉第效率为60.8±1.6%,在-1.5 V时,Cu的法拉第效率为50.5±4.3%)。值得注意的是,掺入CeO显著提高了甲烷选择性,在-1.3 V时,Cu/CeO的法拉第效率提高到78.5±0.4%,在-1.4 V时,Cu/CeO的法拉第效率提高到64.3±1.9%。X射线吸收光谱(XAS)和X射线光电子能谱(XPS)分析证实了在电催化还原条件下铜簇内稳定的铜物种,有利于CO中间体的稳定。动力学分析确定铜簇内孤立的铜位点是甲烷和乙烯形成的活性中心,通过朗缪尔-欣谢尔伍德机制介导氢化反应,同时抑制碳-碳偶联。理论计算表明,CeO促进水活化以产生丰富的H物种,随后这些物种通过反向氢溢流机制迁移到铜簇中的硫位点。这个协同过程显著加速了*CO氢化动力学,从而提高了甲烷选择性。