Suppr超能文献

糖尿病的异质性与疾病进展的树状表示:中国心血管代谢疾病与癌症队列(4C)研究的结果

Heterogeneity of diabetes and disease progression with a tree-like representation: findings from the China Cardiometabolic Disease and Cancer Cohort (4C) study.

作者信息

Jia Xiaojing, Wang Shuangyuan, Lin Hong, Zhu Yuanyue, Ding Yilan, Li Mian, Xu Yu, Xu Min, Huang Feiyue, Shen Feixia, Gu Xuejiang, Mu Yiming, Chen Lulu, Zeng Tianshu, Shi Lixin, Su Qing, Yu Xuefeng, Yan Li, Qin Guijun, Wan Qin, Chen Gang, Tang Xulei, Gao Zhengnan, Hu Ruying, Luo Zuojie, Qin Yingfen, Chen Li, Hou Xinguo, Huo Yanan, Li Qiang, Wang Guixia, Zhang Yinfei, Liu Chao, Wang Youmin, Wu Shengli, Yang Tao, Deng Huacong, Zhang Yifang, Wei Huapeng, Zheng Jie, Wang Tiange, Zhao Zhiyun, Zhao Jiajun, Ning Guang, Wang Weiqing, Bi Yufang, Lu Jieli

机构信息

Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Digital Medicine Innovation Center, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

出版信息

Diabetologia. 2025 Aug 30. doi: 10.1007/s00125-025-06528-x.

Abstract

AIMS/HYPOTHESIS: Diabetes heterogeneity has been modelled as a continuum in European populations, but its phenotypes and long-term comorbidity risks remain unclear in Chinese individuals. This study aimed to identify distinct phenotypes and evaluate their links to future cardiometabolic risks in a large Chinese cohort.

METHODS

The discriminative dimensionality reduction with trees (DDRTree) algorithm was used to develop a tree structure based on nine clinical variables. Cox proportional hazard models or logistic regression models were used to analyse probabilities of diabetes-related outcomes.

RESULTS

This study included 19,612 individuals with newly diagnosed diabetes (36.8% male, mean age 59.01 years [SD 8.63]) from the China Cardiometabolic Disease and Cancer Cohort (4C) study. All nine clinical variables used for establishing DDRTree models were gradient distributed across the tree. By overlaying risks of diabetes-related outcomes, we show how these risks differ by participant phenotype. Participants characterised by hyperglycaemia, obesity and dyslipidaemia showed elevated risks of insulin initiation, hypoglycaemia and chronic kidney diseases, while those with hypertension and high creatinine, total cholesterol and alanine aminotransferase levels were associated with a higher risk of CVD. Notably, social determinants and lifestyle factors further contributed to the observed heterogeneity.

CONCLUSIONS/INTERPRETATION: These findings characterise the heterogeneity of diabetes phenotypes and complication risks in the Chinese population, suggesting potential implications for personalised diabetes care. Given the observed phenotypic differences, management strategies should consider population-specific characteristics.

摘要

目的/假设:在欧洲人群中,糖尿病异质性被建模为一个连续体,但在中国人群中,其表型和长期合并症风险仍不明确。本研究旨在在中国的一个大型队列中识别不同的表型,并评估它们与未来心血管代谢风险的关联。

方法

使用基于树的判别降维算法(DDRTree)基于9个临床变量构建树结构。采用Cox比例风险模型或逻辑回归模型分析糖尿病相关结局的概率。

结果

本研究纳入了来自中国心血管代谢疾病与癌症队列(4C)研究的19612例新诊断糖尿病患者(男性占36.8%,平均年龄59.01岁[标准差8.63])。用于建立DDRTree模型的所有9个临床变量在整棵树中呈梯度分布。通过叠加糖尿病相关结局的风险,我们展示了这些风险如何因参与者表型而异。以高血糖、肥胖和血脂异常为特征的参与者胰岛素起始、低血糖和慢性肾病风险升高,而高血压、肌酐、总胆固醇和丙氨酸转氨酶水平高的参与者心血管疾病风险更高。值得注意的是,社会决定因素和生活方式因素进一步导致了观察到的异质性。

结论/解读:这些发现描述了中国人群中糖尿病表型和并发症风险的异质性,提示对个性化糖尿病护理的潜在意义。鉴于观察到的表型差异,管理策略应考虑人群特异性特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验