Suppr超能文献

使用阿坦加纳-巴莱亚努卡普托算子的猴痘传播动力学分数阶数学模型。

Fractional-order mathematical model for Monkeypox transmission dynamics using the Atangana-Baleanu Caputo operator.

作者信息

Agbata Benedict Celestine, Cenaj Erjola, Dervishi Raimonda, Danjuma Yahaya Jibrin, Shior Mshuur Mary-Anne, Abah Emmanuel, Onuche Joseph Solomon, Emadifar Homan

机构信息

Department of Mathematics and Statistics, Faculty of Science, Confluence University of Science and Technology, Osara, Nigeria.

Department of Mathematical Engineering, Mathematical and Physical Engineering Faculty, Polytechnic University of Tirana, Tirana, Albania.

出版信息

BMC Infect Dis. 2025 Aug 8;25(1):1000. doi: 10.1186/s12879-025-11383-7.

Abstract

Monkeypox continues to be a major global health concern, marked by recurring outbreaks and complex transmission dynamics. Traditional models of Monkeypox often fail to account for reinfection and the benefits of fractional-order systems, limiting their ability to accurately represent real-world disease progression. This study addresses these gaps by applying the Atangana-Baleanu-Caputo fractional derivative with the Mittag-Leffler kernel to model the transmission dynamics of Monkeypox. The Picard-Lindelöf method is used to establish the existence and uniqueness of solutions, ensuring the model's mathematical soundness. Numerical simulations are carried out using the MATLAB ODE45 package to assess the long-term behavior of the disease, with a focus on the impact of secondary infection rates, as well as the effectiveness of treatment and quarantine interventions. Sensitivity analysis is performed to identify key parameters that influence disease spread, offering valuable insights for targeted control strategies. Our results show that combining quarantine and treatment measures with public health interventions, such as personal protective equipment, contact tracing, and vaccination, significantly reduces the spread of Monkeypox. Furthermore, the fractional-order model's memory effect provides a more accurate representation of disease dynamics compared to traditional integer-order models, capturing how past states influence current disease progression. The study concludes with recommendations for improving preparedness and strategies to mitigate the risk of future infectious disease outbreaks.

摘要

猴痘仍然是一个重大的全球卫生问题,其特点是疫情反复爆发且传播动态复杂。传统的猴痘模型往往无法考虑再感染以及分数阶系统的优势,限制了它们准确呈现现实世界中疾病进展的能力。本研究通过应用带有米塔格 - 莱夫勒核的阿坦加纳 - 巴莱亚努 - 卡普托分数阶导数来模拟猴痘的传播动态,解决了这些差距。使用皮卡德 - 林德洛夫方法来确定解的存在性和唯一性,确保模型在数学上的合理性。使用MATLAB的ODE45软件包进行数值模拟,以评估该疾病的长期行为,重点关注二次感染率的影响以及治疗和隔离干预措施的有效性。进行敏感性分析以确定影响疾病传播的关键参数,为有针对性的控制策略提供有价值的见解。我们的结果表明,将隔离和治疗措施与公共卫生干预措施(如个人防护设备、接触者追踪和疫苗接种)相结合,可显著减少猴痘的传播。此外,与传统的整数阶模型相比,分数阶模型的记忆效应能更准确地呈现疾病动态,捕捉过去状态如何影响当前疾病进展。该研究最后提出了改进准备工作的建议以及减轻未来传染病爆发风险的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/655a/12333160/af8ab1110f82/12879_2025_11383_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验