Pitanti A, Ashurbekov N, dePedro-Embid I, Msall M, Santos P V
Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e. V., Berlin, Germany.
University of Pisa, Dipartimento di Fisica E. Fermi, Pisa, Italy.
Nat Commun. 2025 Aug 30;16(1):8116. doi: 10.1038/s41467-025-63362-w.
Controlling the symmetry of optical and mechanical waves is pivotal to their full exploitation in technological applications and topology-linked fundamental physics experiments. Leveraging on the control of orbital angular momentum, we introduce here a device forming acoustic vortices which can impart an orbital angular momentum modulation at super-high-frequency on reflected light beams. Originated by shape-engineering of a single-contact bulk acoustic wave resonator, acoustic vortices are generated in a wide band of frequencies around 4 GHz with topological charge ranging from 1 to beyond 13 tunable by the device geometry and/or excitation frequency. With all electrical control and on-chip integration our device offers compact solutions for angular-momentum-based light communication, three-dimensional particle manipulation, as well as alternative interaction schemes for optomechanical devices.
控制光波和机械波的对称性对于它们在技术应用和与拓扑相关的基础物理实验中的充分利用至关重要。利用轨道角动量控制,我们在此介绍一种形成声学涡旋的装置,该装置可以在超高频下对反射光束施加轨道角动量调制。通过单触点体声波谐振器的形状工程产生,声学涡旋在4GHz左右的宽频带内产生,拓扑电荷范围从1到超过13,可通过装置几何形状和/或激发频率进行调节。通过全电控制和片上集成,我们的装置为基于角动量的光通信、三维粒子操纵以及光机械装置的替代相互作用方案提供了紧凑的解决方案。