Ozcan Z, Iseri Y, Ulloa F, Imbulana N, Snider E, Mure-Ravaud M, Anderson M L, Kavvas M L
Hydrologic Research Laboratory, Department of Civil & Envr. Engineering, University of California, Davis, CA, USA.
Now at the Arid Land Research Center, International Platform for Dryland Research and Education, Tottori University, Tottori, Japan.
Sci Rep. 2025 Aug 30;15(1):31968. doi: 10.1038/s41598-025-15932-7.
Seasonal streamflow forecasts are essential given climate-driven extremes that breach stationarity in traditional methods. The complex hydrology and competing demands necessitate improved forecasting in the Upper Feather River Basin (UFRB), a key California State Water Project source upstream of Oroville Dam. We introduce a hybrid framework combining dynamical downscaling via WRF and the WEHY-HCM snow-hydrology model with a lead-time-dependent exponential-smoothing filter that adaptively corrects bias and quantifies uncertainty. Applied to December-July ensemble forecasts for water year 2024 using hindcast error training (2018-2023), this approach reduced RMSE by 8.7-318.3 million m³ across eight initialization months and eliminated systematic bias. The resulting 10-90% exceedance bands captured ~ 80% of observed flows, offering reliable confidence intervals. This hybrid method delivers accurate, low-bias streamflow forecasts for reservoir operations, flood mitigation, and irrigation planning in the UFRB and provides a transferable template for other basins facing hydroclimatic variability.
考虑到气候驱动的极端情况会破坏传统方法中的平稳性,季节性径流预测至关重要。复杂的水文情况和相互竞争的需求使得加利福尼亚州奥罗维尔大坝上游关键水源地上游羽毛河流域(UFRB)的预测需要改进。我们引入了一个混合框架,该框架将通过WRF和WEHY-HCM雪水文模型进行的动力降尺度与一个依赖提前期的指数平滑滤波器相结合,该滤波器可自适应地校正偏差并量化不确定性。使用后报误差训练(2018 - 2023年)将该方法应用于2024水年12月至7月的集合预报,在八个初始化月份中,该方法将均方根误差降低了870万至3.183亿立方米,并消除了系统偏差。由此产生的10% - 90%超越带捕获了约80%的观测流量,提供了可靠的置信区间。这种混合方法为UFRB的水库运行、洪水缓解和灌溉规划提供了准确、低偏差的径流预测,并为其他面临水文气候变化的流域提供了可转移的模板。