Ma Xiaotong, Liang Xin, Yu Yixin, Guan Hao, Gao Xuejiao, Li Jing, Guan Shanyue, Liu Aihua, Yao Li, Fan Kelong
Key Laboratory of Biomechanics and Mechanobiology, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Ministry of Education, Beihang University, Beijing, 100191, China.
Beijing Neurosurgical Institute, Beijing Tiantan Hospital, National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, 100070, China.
J Nanobiotechnology. 2025 Aug 30;23(1):596. doi: 10.1186/s12951-025-03624-3.
Ischemic reperfusion (I/R) injury is dominated by excessive reactive oxygen species (ROS)-mediated oxidative damage and uncontrolled inflammation, yet effective strategies for simultaneous diagnosis and treatment remain elusive. Herein, we report a defect-engineered amorphous-like MnCeO nanointerceptor with dual capabilities of magnetic resonance imaging (MRI) -guided stroke diagnosis and ROS-scavenging therapy. The synergistic effect of the amorphous-like structure and Mn-Ce solid solution induces abundant oxygen vacancies and a disordered surface, significantly boosting ROS catalytic removal. Theoretical calculations confirm that Mn doping and oxygen vacancy formation modulate the electronic structure, reduce the adsorption energy of ROS intermediates, and lower catalytic energy barriers, thereby enhancing enzyme-like activity. As a result, MnCeO exhibits an exceptionally high superoxide radical scavenging efficiency (115-fold higher than CeO) and superior MRI contrast (r = 139 mM⁻¹) for precise lesion localization. In vivo, MnCeO efficiently alleviates ROS-mediated oxidative stress and neuroinflammation, promoting substantial recovery from I/R injury. This work offers a powerful defect-engineering strategy for developing next-generation diagnostic and therapeutic nanozymes.
缺血再灌注(I/R)损伤主要由过量的活性氧(ROS)介导的氧化损伤和失控的炎症反应所主导,然而,同时进行诊断和治疗的有效策略仍然难以捉摸。在此,我们报道了一种缺陷工程化的类非晶态MnCeO纳米拦截器,它具有磁共振成像(MRI)引导的中风诊断和ROS清除治疗的双重能力。类非晶态结构和Mn-Ce固溶体的协同效应诱导了大量的氧空位和无序的表面,显著提高了ROS的催化去除能力。理论计算证实,Mn掺杂和氧空位的形成调节了电子结构,降低了ROS中间体的吸附能,降低了催化能垒,从而增强了类酶活性。结果,MnCeO表现出极高的超氧自由基清除效率(比CeO高115倍)和优异的MRI对比度(r = 139 mM⁻¹),用于精确的病变定位。在体内,MnCeO有效地减轻了ROS介导的氧化应激和神经炎症,促进了I/R损伤后的实质性恢复。这项工作为开发下一代诊断和治疗纳米酶提供了一种强大的缺陷工程策略。
J Nanobiotechnology. 2025-8-30
Nat Rev Bioeng. 2025-3
ACS Nano. 2024-1-23
J Am Chem Soc. 2023-8-30
Adv Mater. 2024-3
Biomaterials. 2022-12