文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于T MRI引导的再灌注损伤治疗的缺陷工程化类非晶态纳米拦截器

Defect-engineered amorphous-like nanointerceptors for T MRI-Guided treatment of reperfusion injury.

作者信息

Ma Xiaotong, Liang Xin, Yu Yixin, Guan Hao, Gao Xuejiao, Li Jing, Guan Shanyue, Liu Aihua, Yao Li, Fan Kelong

机构信息

Key Laboratory of Biomechanics and Mechanobiology, Key Laboratory of Innovation and Transformation of Advanced Medical Devices, Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Devices (Interdiscipline of Medicine and Engineering), School of Biological Science and Medical Engineering, Beihang University, Ministry of Education, Beihang University, Beijing, 100191, China.

Beijing Neurosurgical Institute, Beijing Tiantan Hospital, National Clinical Research Center for Neurological Diseases, Capital Medical University, Beijing, 100070, China.

出版信息

J Nanobiotechnology. 2025 Aug 30;23(1):596. doi: 10.1186/s12951-025-03624-3.


DOI:10.1186/s12951-025-03624-3
PMID:40885972
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12398121/
Abstract

Ischemic reperfusion (I/R) injury is dominated by excessive reactive oxygen species (ROS)-mediated oxidative damage and uncontrolled inflammation, yet effective strategies for simultaneous diagnosis and treatment remain elusive. Herein, we report a defect-engineered amorphous-like MnCeO nanointerceptor with dual capabilities of magnetic resonance imaging (MRI) -guided stroke diagnosis and ROS-scavenging therapy. The synergistic effect of the amorphous-like structure and Mn-Ce solid solution induces abundant oxygen vacancies and a disordered surface, significantly boosting ROS catalytic removal. Theoretical calculations confirm that Mn doping and oxygen vacancy formation modulate the electronic structure, reduce the adsorption energy of ROS intermediates, and lower catalytic energy barriers, thereby enhancing enzyme-like activity. As a result, MnCeO exhibits an exceptionally high superoxide radical scavenging efficiency (115-fold higher than CeO) and superior MRI contrast (r = 139 mM⁻¹) for precise lesion localization. In vivo, MnCeO efficiently alleviates ROS-mediated oxidative stress and neuroinflammation, promoting substantial recovery from I/R injury. This work offers a powerful defect-engineering strategy for developing next-generation diagnostic and therapeutic nanozymes.

摘要

缺血再灌注(I/R)损伤主要由过量的活性氧(ROS)介导的氧化损伤和失控的炎症反应所主导,然而,同时进行诊断和治疗的有效策略仍然难以捉摸。在此,我们报道了一种缺陷工程化的类非晶态MnCeO纳米拦截器,它具有磁共振成像(MRI)引导的中风诊断和ROS清除治疗的双重能力。类非晶态结构和Mn-Ce固溶体的协同效应诱导了大量的氧空位和无序的表面,显著提高了ROS的催化去除能力。理论计算证实,Mn掺杂和氧空位的形成调节了电子结构,降低了ROS中间体的吸附能,降低了催化能垒,从而增强了类酶活性。结果,MnCeO表现出极高的超氧自由基清除效率(比CeO高115倍)和优异的MRI对比度(r = 139 mM⁻¹),用于精确的病变定位。在体内,MnCeO有效地减轻了ROS介导的氧化应激和神经炎症,促进了I/R损伤后的实质性恢复。这项工作为开发下一代诊断和治疗纳米酶提供了一种强大的缺陷工程策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2235/12398121/862ec431ca8c/12951_2025_3624_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2235/12398121/9605cdff696a/12951_2025_3624_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2235/12398121/9ad4f003f4e2/12951_2025_3624_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2235/12398121/a4becfd4de0c/12951_2025_3624_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2235/12398121/a3222bd94cdd/12951_2025_3624_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2235/12398121/4f34b45f6b31/12951_2025_3624_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2235/12398121/22214ebe13fb/12951_2025_3624_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2235/12398121/3ad06140e2bc/12951_2025_3624_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2235/12398121/862ec431ca8c/12951_2025_3624_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2235/12398121/9605cdff696a/12951_2025_3624_Sch1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2235/12398121/9ad4f003f4e2/12951_2025_3624_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2235/12398121/a4becfd4de0c/12951_2025_3624_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2235/12398121/a3222bd94cdd/12951_2025_3624_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2235/12398121/4f34b45f6b31/12951_2025_3624_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2235/12398121/22214ebe13fb/12951_2025_3624_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2235/12398121/3ad06140e2bc/12951_2025_3624_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2235/12398121/862ec431ca8c/12951_2025_3624_Fig7_HTML.jpg

相似文献

[1]
Defect-engineered amorphous-like nanointerceptors for T MRI-Guided treatment of reperfusion injury.

J Nanobiotechnology. 2025-8-30

[2]
MnO nanozymes as potential therapeutic agents for autism spectrum disorder: insights from behavioral and molecular studies.

Nanoscale. 2025-8-28

[3]
Fe-flavonoid nanozyme as dual modulator of oxidative stress and autophagy for acute kidney injury repair.

Theranostics. 2025-7-28

[4]
Engineered Nanozymes with Asymmetric Mn─O─Ce Sites for Intratumorally Leveraged Multimode Therapy.

Adv Mater. 2025-7

[5]
Mitochondria-targeted ROS-scavenging polymer protects the hepatocytes and macrophages against hepatic ischemia-reperfusion injury.

Acta Biomater. 2025-8

[6]
Ultrasmall platinum single-atom enzyme alleviates oxidative stress and macrophage polarization induced by acute kidney ischemia-reperfusion injury through inhibition of cell death storm.

J Nanobiotechnology. 2025-4-27

[7]
Biomimetic Platelet Membrane-Based Polyphenol-CeO Nanozyme Complex: A Broad-Spectrum Antioxidative System for Comprehensive Atherosclerosis Treatment.

ACS Appl Mater Interfaces. 2025-7-30

[8]
A Multiple DAMPs-Scavenging Compound OP18 Attenuates Hepatic Ischemia/Reperfusion Injury.

Shock. 2025-5-1

[9]
Nanocatalytic Antioxidation: A General Chemical Approach for Alleviating Oxidative Stress in Diseases.

Acc Chem Res. 2025-9-2

[10]
Reactive Oxygen Species-Scavenging Mesoporous Poly(tannic acid) Nanospheres Alleviate Acute Kidney Injury by Inhibiting Ferroptosis.

ACS Biomater Sci Eng. 2024-9-9

本文引用的文献

[1]
Imaging-guided precision hyperthermia with magnetic nanoparticles.

Nat Rev Bioeng. 2025-3

[2]
Protective effects of Pt-N-C single-atom nanozymes against myocardial ischemia-reperfusion injury.

Nat Commun. 2024-2-23

[3]
Bioactive Ceria Nanoenzymes Target Mitochondria in Reperfusion Injury to Treat Ischemic Stroke.

ACS Nano. 2024-1-24

[4]
Functionalized Nanomaterials Capable of Crossing the Blood-Brain Barrier.

ACS Nano. 2024-1-23

[5]
A ferroptosis-targeting ceria anchored halloysite as orally drug delivery system for radiation colitis therapy.

Nat Commun. 2023-8-22

[6]
Intrinsic Strain-Mediated Ultrathin Ceria Nanoantioxidant.

J Am Chem Soc. 2023-8-30

[7]
Bifunctional Cascading Nanozymes Based on Carbon Dots Promotes Photodynamic Therapy by Regulating Hypoxia and Glycolysis.

ACS Nano. 2023-9-12

[8]
Doping Engineering to Modulate Lattice and Electronic Structure for Enhanced Piezocatalytic Therapy and Ferroptosis.

Adv Mater. 2023-9

[9]
Ceria-Based Therapeutic Antioxidants for Biomedical Applications.

Adv Mater. 2024-3

[10]
Cerium oxide nanoparticles with antioxidative neurorestoration for ischemic stroke.

Biomaterials. 2022-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索