Tronchin Lorenzo, Vu Minh H, Soda Paolo, Lofstedt Tommy
IEEE Trans Pattern Anal Mach Intell. 2025 Sep 1;PP. doi: 10.1109/TPAMI.2025.3598866.
Data Augmentation (DA) is a technique to increase the quantity and diversity of the training data, and by that alleviate overfitting and improve generalisation. However, standard DA produces synthetic data for augmentation with limited diversity. Generative Adversarial Networks (GANs) may unlock additional information in a dataset by generating synthetic samples having the appearance of real images. However, these models struggle to simultaneously address three key requirements: fidelity and high-quality samples; diversity and mode coverage; and fast sampling. Indeed, GANs generate high-quality samples rapidly, but have poor mode coverage, limiting their adoption in DA applications. We propose LatentAugment, a DA strategy that overcomes the low diversity of GANs, opening up for use in DA applications. Without external supervision, LatentAugment modifies latent vectors and moves them into latent space regions to maximise the synthetic images' diversity and fidelity. It is also agnostic to the dataset and the downstream task. A wide set of experiments shows that LatentAugment improves the generalisation of a deep model translating from MRI-to-CT beating both standard DA as well GAN-based sampling. We further demonstrate its effectiveness when translating from low-energy mammograms to dual-energy subtracted images in contrast-enhanced spectral mammography. Moreover, still in comparison with GAN-based sampling, LatentAugment synthetic samples show superior mode coverage and diversity. Code is available at: https://github.com/ltronchin/LatentAugment.
数据增强(DA)是一种增加训练数据数量和多样性的技术,以此减轻过拟合并提高泛化能力。然而,标准的数据增强方法生成的用于增强的合成数据多样性有限。生成对抗网络(GAN)可以通过生成具有真实图像外观的合成样本,挖掘数据集中的更多信息。但是,这些模型难以同时满足三个关键要求:保真度和高质量样本;多样性和模式覆盖;以及快速采样。实际上,GAN能够快速生成高质量样本,但模式覆盖性较差,限制了它们在数据增强应用中的采用。我们提出了LatentAugment,这是一种数据增强策略,克服了GAN多样性不足的问题,为数据增强应用开辟了道路。在无需外部监督的情况下,LatentAugment修改潜在向量并将其移动到潜在空间区域,以最大化合成图像的多样性和保真度。它也与数据集和下游任务无关。大量实验表明,LatentAugment提高了从MRI到CT的深度模型的泛化能力,优于标准的数据增强方法以及基于GAN的采样方法。我们进一步证明了在对比增强光谱乳腺摄影中从低能乳腺X线照片转换为双能减影图像时它的有效性。此外,与基于GAN的采样相比,LatentAugment的合成样本具有更好的模式覆盖性和多样性。代码可在以下网址获取:https://github.com/ltronchin/LatentAugment 。