Waqas Maria, Hasan Shehzad, Ghori Ammar Farid, Alfaraj Amal, Faheemuddin Muhammad, Khurshid Zohaib
Department of Computer and Information Systems Engineering, NED University of Engineering and Technology, Karachi, Pakistan.
Department of Prosthodontics and Dental Implantology, King Faisal University, Al-Ahsa, Saudi Arabia.
Int Dent J. 2025 Sep 1;75(6):103878. doi: 10.1016/j.identj.2025.103878.
To overcome the scarcity of annotated dental X-ray datasets, this study presents a novel pipeline for generating high-resolution synthetic orthopantomography (OPG) images using customized generative adversarial networks (GANs).
A total of 4777 real OPG images were collected from clinical centres in Pakistan, Thailand, and the U.S., covering diverse anatomical features. Twelve GAN models were initially trained, with four top-performing variants selected for further training on both combined and region-specific datasets. Synthetic images were generated at 2048 × 1024 pixels, maintaining fine anatomical detail. The evaluation was conducted using (1) a YOLO-based object detection model trained on real OPGs to assess feature representation via mean average precision, and (2) expert dentist scoring for anatomical and diagnostic realism.
All selected models produced realistic synthetic OPGs. The YOLO detector achieved strong performance on these images, indicating accurate structural representation. Expert evaluations confirmed high anatomical plausibility, with models M1 and M3 achieving over 50% of the reference scores assigned to real OPGs.
The developed GAN-based pipeline enables the ethical and scalable creation of synthetic OPG images, suitable for augmenting datasets used in artificial intelligence-driven dental diagnostics.
This method provides a practical solution to data limitations in dental artificial intelligence, supporting model development in privacy-sensitive or low-resource environments.
为克服标注牙科X线数据集的稀缺问题,本研究提出一种新颖的流程,利用定制生成对抗网络(GAN)生成高分辨率合成口腔全景体层摄影(OPG)图像。
从巴基斯坦、泰国和美国的临床中心收集了总共4777张真实OPG图像,涵盖了各种解剖特征。最初训练了12个GAN模型,选择了四个表现最佳的变体在组合数据集和区域特定数据集上进一步训练。以2048×1024像素生成合成图像,保留精细的解剖细节。评估使用(1)在真实OPG上训练的基于YOLO的目标检测模型,通过平均精度均值评估特征表示,以及(2)专家牙医对解剖学和诊断真实性的评分。
所有选定模型都生成了逼真的合成OPG图像。YOLO检测器在这些图像上表现出色,表明结构表示准确。专家评估证实了解剖学上的高度合理性,模型M1和M3获得了分配给真实OPG的参考分数的50%以上。
所开发的基于GAN的流程能够以符合伦理且可扩展的方式创建合成OPG图像,适用于扩充用于人工智能驱动的牙科诊断的数据集。
该方法为牙科人工智能中的数据限制提供了切实可行的解决方案,支持在隐私敏感或资源匮乏环境中的模型开发。