Suppr超能文献

在急诊科使用人工智能对心电图进行胸痛风险分层。

Risk stratification of chest pain in the emergency department using artificial intelligence applied to electrocardiograms.

作者信息

Haimovich Julian S, Kolossváry Márton, Alam Ridwan, Padrós-Valls Raimon, Lu Michael T, Aguirre Aaron D

机构信息

Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Heart and Vascular Institute, Cardiovascular Research Center, Mass General Brigham, Boston, Massachusetts, USA.

出版信息

Open Heart. 2025 Sep 1;12(2):e003343. doi: 10.1136/openhrt-2025-003343.

Abstract

BACKGROUND

Despite standardised approaches, subjective assessment and inconsistent diagnostic testing for chest pain in the emergency department (ED) drive costs, disparities and adverse outcomes. Artificial intelligence offers potential to automate and improve risk stratification.

METHODS AND RESULTS

Using a retrospective cohort of 15 048 patients presenting to the ED of a tertiary care hospital, we trained a neural network classifier ('Chest Pain-AI' or 'CP-AI') to predict a 7-day composite endpoint of major cardiovascular diagnoses including myocardial infarction, pulmonary embolism, aortic dissection and all-cause mortality. Inputs to CP-AI included age, sex, cardiac biomarkers (D-dimer or troponin I or T positivity) and numerical representations of presenting 12-lead ECGs. ECG representations were derived using a publicly available deep learning model known as patient contrastive learning of representations. In an external validation set of 14 476 patients, we evaluated CP-AI against comparator models, including a 'Biomarker Model' incorporating clinical data (age, sex, biomarker positivity), based on both the area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC). CP-AI outperformed the Biomarker Model in prediction of the 7-day composite endpoint with an AUROC of 0.82 (95% CI 0.81 to 0.83) vs 0.79 (95% CI 0.78 to 0.81) and an AUPRC of 0.46 (95% CI 0.44 to 0.49) vs 0.35 (95% CI 0.33 to 0.37) (p<0.05 for both comparisons).

CONCLUSIONS

CP-AI, a fully automated neural network classifier, demonstrated superior performance in the prediction of 7-day major cardiovascular diagnoses for patients presenting with acute chest pain compared with conventional models trained on demographics and cardiac biomarkers. CP-AI may standardise and expedite risk stratification of patients presenting to the ED with chest pain.

摘要

背景

尽管采用了标准化方法,但急诊科对胸痛的主观评估和诊断测试不一致,导致了成本增加、差异和不良后果。人工智能有潜力实现风险分层的自动化并加以改进。

方法与结果

我们使用一家三级医院急诊科15048例患者的回顾性队列,训练了一个神经网络分类器(“胸痛人工智能”或“CP-AI”),以预测包括心肌梗死、肺栓塞、主动脉夹层和全因死亡率在内的主要心血管诊断的7天综合终点。CP-AI的输入包括年龄、性别、心脏生物标志物(D-二聚体或肌钙蛋白I或T阳性)以及呈现的12导联心电图的数字表示。心电图表示是使用一种名为患者表征对比学习的公开可用深度学习模型得出的。在一个14476例患者的外部验证集中,我们基于受试者操作特征曲线下面积(AUROC)和精确召回率曲线下面积(AUPRC),将CP-AI与对照模型进行了比较,对照模型包括一个纳入临床数据(年龄、性别、生物标志物阳性)的“生物标志物模型”。在预测7天综合终点方面,CP-AI优于生物标志物模型,AUROC为0.82(95%CI 0.81至0.83),而生物标志物模型为0.79(95%CI 0.78至0.81);AUPRC为0.46(95%CI 0.44至0.49),而生物标志物模型为0.35(95%CI 0.33至0.37)(两项比较p均<0.05)。

结论

CP-AI是一种全自动神经网络分类器,与基于人口统计学和心脏生物标志物训练的传统模型相比,在预测急性胸痛患者的7天主要心血管诊断方面表现出卓越性能。CP-AI可能会使急诊科胸痛患者的风险分层标准化并加快其进程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a3e5/12406858/c8fdd2fb0976/openhrt-12-2-g001.jpg

相似文献

4
Expert-Level Automated Diagnosis of the Pediatric ECG Using a Deep Neural Network.
JACC Clin Electrophysiol. 2025 Mar 1. doi: 10.1016/j.jacep.2025.02.003.
8
Ensemble Deep Learning Algorithm for Structural Heart Disease Screening Using Electrocardiographic Images: PRESENT SHD.
J Am Coll Cardiol. 2025 Apr 1;85(12):1302-1313. doi: 10.1016/j.jacc.2025.01.030.
10
Pre-hospital evaluation of chest pain patients using the modified HEART-score: rationale and design.
Future Cardiol. 2024 Apr 25;20(5-6):241-250. doi: 10.1080/14796678.2024.2356995. Epub 2024 Jun 28.

本文引用的文献

1
Use of Artificial Intelligence in Improving Outcomes in Heart Disease: A Scientific Statement From the American Heart Association.
Circulation. 2024 Apr 2;149(14):e1028-e1050. doi: 10.1161/CIR.0000000000001201. Epub 2024 Feb 28.
2
Implications of Bias in Artificial Intelligence: Considerations for Cardiovascular Imaging.
Curr Atheroscler Rep. 2024 Apr;26(4):91-102. doi: 10.1007/s11883-024-01190-x. Epub 2024 Feb 16.
3
Race differences in cardiac testing rates for patients with chest pain in a multisite cohort.
Acad Emerg Med. 2023 Oct;30(10):1020-1028. doi: 10.1111/acem.14762. Epub 2023 Jun 19.
4
Artificial intelligence-enabled classification of hypertrophic heart diseases using electrocardiograms.
Cardiovasc Digit Health J. 2023 Mar 7;4(2):48-59. doi: 10.1016/j.cvdhj.2023.03.001. eCollection 2023 Apr.
6
Deep Learning Analysis of Chest Radiographs to Triage Patients with Acute Chest Pain Syndrome.
Radiology. 2023 Feb;306(2):e221926. doi: 10.1148/radiol.221926. Epub 2023 Jan 17.
9
Sex and Race Differences in the Evaluation and Treatment of Young Adults Presenting to the Emergency Department With Chest Pain.
J Am Heart Assoc. 2022 May 17;11(10):e024199. doi: 10.1161/JAHA.121.024199. Epub 2022 May 4.
10
Development of a machine learning model using electrocardiogram signals to improve acute pulmonary embolism screening.
Eur Heart J Digit Health. 2021 Nov 25;3(1):56-66. doi: 10.1093/ehjdh/ztab101. eCollection 2022 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验