Haimovich Julian S, Kolossváry Márton, Alam Ridwan, Padrós-Valls Raimon, Lu Michael T, Aguirre Aaron D
Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Heart and Vascular Institute, Cardiovascular Research Center, Mass General Brigham, Boston, Massachusetts, USA.
Open Heart. 2025 Sep 1;12(2):e003343. doi: 10.1136/openhrt-2025-003343.
Despite standardised approaches, subjective assessment and inconsistent diagnostic testing for chest pain in the emergency department (ED) drive costs, disparities and adverse outcomes. Artificial intelligence offers potential to automate and improve risk stratification.
Using a retrospective cohort of 15 048 patients presenting to the ED of a tertiary care hospital, we trained a neural network classifier ('Chest Pain-AI' or 'CP-AI') to predict a 7-day composite endpoint of major cardiovascular diagnoses including myocardial infarction, pulmonary embolism, aortic dissection and all-cause mortality. Inputs to CP-AI included age, sex, cardiac biomarkers (D-dimer or troponin I or T positivity) and numerical representations of presenting 12-lead ECGs. ECG representations were derived using a publicly available deep learning model known as patient contrastive learning of representations. In an external validation set of 14 476 patients, we evaluated CP-AI against comparator models, including a 'Biomarker Model' incorporating clinical data (age, sex, biomarker positivity), based on both the area under the receiver operating characteristic curve (AUROC) and area under the precision-recall curve (AUPRC). CP-AI outperformed the Biomarker Model in prediction of the 7-day composite endpoint with an AUROC of 0.82 (95% CI 0.81 to 0.83) vs 0.79 (95% CI 0.78 to 0.81) and an AUPRC of 0.46 (95% CI 0.44 to 0.49) vs 0.35 (95% CI 0.33 to 0.37) (p<0.05 for both comparisons).
CP-AI, a fully automated neural network classifier, demonstrated superior performance in the prediction of 7-day major cardiovascular diagnoses for patients presenting with acute chest pain compared with conventional models trained on demographics and cardiac biomarkers. CP-AI may standardise and expedite risk stratification of patients presenting to the ED with chest pain.
尽管采用了标准化方法,但急诊科对胸痛的主观评估和诊断测试不一致,导致了成本增加、差异和不良后果。人工智能有潜力实现风险分层的自动化并加以改进。
我们使用一家三级医院急诊科15048例患者的回顾性队列,训练了一个神经网络分类器(“胸痛人工智能”或“CP-AI”),以预测包括心肌梗死、肺栓塞、主动脉夹层和全因死亡率在内的主要心血管诊断的7天综合终点。CP-AI的输入包括年龄、性别、心脏生物标志物(D-二聚体或肌钙蛋白I或T阳性)以及呈现的12导联心电图的数字表示。心电图表示是使用一种名为患者表征对比学习的公开可用深度学习模型得出的。在一个14476例患者的外部验证集中,我们基于受试者操作特征曲线下面积(AUROC)和精确召回率曲线下面积(AUPRC),将CP-AI与对照模型进行了比较,对照模型包括一个纳入临床数据(年龄、性别、生物标志物阳性)的“生物标志物模型”。在预测7天综合终点方面,CP-AI优于生物标志物模型,AUROC为0.82(95%CI 0.81至0.83),而生物标志物模型为0.79(95%CI 0.78至0.81);AUPRC为0.46(95%CI 0.44至0.49),而生物标志物模型为0.35(95%CI 0.33至0.37)(两项比较p均<0.05)。
CP-AI是一种全自动神经网络分类器,与基于人口统计学和心脏生物标志物训练的传统模型相比,在预测急性胸痛患者的7天主要心血管诊断方面表现出卓越性能。CP-AI可能会使急诊科胸痛患者的风险分层标准化并加快其进程。