Suppr超能文献

利用心电图进行人工智能辅助的肥厚性心脏病分类

Artificial intelligence-enabled classification of hypertrophic heart diseases using electrocardiograms.

作者信息

Haimovich Julian S, Diamant Nate, Khurshid Shaan, Di Achille Paolo, Reeder Christopher, Friedman Sam, Singh Pulkit, Spurlock Walter, Ellinor Patrick T, Philippakis Anthony, Batra Puneet, Ho Jennifer E, Lubitz Steven A

机构信息

Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.

Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts.

出版信息

Cardiovasc Digit Health J. 2023 Mar 7;4(2):48-59. doi: 10.1016/j.cvdhj.2023.03.001. eCollection 2023 Apr.

Abstract

BACKGROUND

Differentiating among cardiac diseases associated with left ventricular hypertrophy (LVH) informs diagnosis and clinical care.

OBJECTIVE

To evaluate if artificial intelligence-enabled analysis of the 12-lead electrocardiogram (ECG) facilitates automated detection and classification of LVH.

METHODS

We used a pretrained convolutional neural network to derive numerical representations of 12-lead ECG waveforms from patients in a multi-institutional healthcare system who had cardiac diseases associated with LVH (n = 50,709), including cardiac amyloidosis (n = 304), hypertrophic cardiomyopathy (n = 1056), hypertension (n = 20,802), aortic stenosis (n = 446), and other causes (n = 4766). We then regressed LVH etiologies relative to no LVH on age, sex, and the numerical 12-lead representations using logistic regression ("LVH-Net"). To assess deep learning model performance on single-lead data analogous to mobile ECGs, we also developed 2 single-lead deep learning models by training models on lead I ("LVH-Net Lead I") or lead II ("LVH-Net Lead II") from the 12-lead ECG. We compared the performance of the LVH-Net models to alternative models fit on (1) age, sex, and standard ECG measures, and (2) clinical ECG-based rules for diagnosing LVH.

RESULTS

The areas under the receiver operator characteristic curve of LVH-Net by specific LVH etiology were cardiac amyloidosis 0.95 [95% CI, 0.93-0.97], hypertrophic cardiomyopathy 0.92 [95% CI, 0.90-0.94], aortic stenosis LVH 0.90 [95% CI, 0.88-0.92], hypertensive LVH 0.76 [95% CI, 0.76-0.77], and other LVH 0.69 [95% CI 0.68-0.71]. The single-lead models also discriminated LVH etiologies well.

CONCLUSION

An artificial intelligence-enabled ECG model is favorable for detection and classification of LVH and outperforms clinical ECG-based rules.

摘要

背景

区分与左心室肥厚(LVH)相关的心脏疾病有助于诊断和临床护理。

目的

评估基于人工智能的12导联心电图(ECG)分析是否有助于LVH的自动检测和分类。

方法

我们使用一个预训练的卷积神经网络,从一个多机构医疗系统中患有与LVH相关心脏疾病的患者(n = 50,709)的12导联ECG波形中提取数字特征,这些疾病包括心脏淀粉样变性(n = 304)、肥厚型心肌病(n = 1056)、高血压(n = 20,802)、主动脉瓣狭窄(n = 446)和其他病因(n = 4766)。然后,我们使用逻辑回归(“LVH-Net”),根据年龄、性别和12导联数字特征,对有无LVH的LVH病因进行回归分析。为了评估深度学习模型在类似于移动ECG的单导联数据上的性能,我们还通过在12导联ECG的I导联(“LVH-Net Lead I”)或II导联(“LVH-Net Lead II”)上训练模型,开发了2个单导联深度学习模型。我们将LVH-Net模型的性能与基于(1)年龄、性别和标准ECG测量值,以及(2)基于临床ECG的LVH诊断规则拟合的替代模型进行比较。

结果

特定LVH病因的LVH-Net在受试者操作特征曲线下的面积分别为:心脏淀粉样变性0.95 [95% CI,0.93 - 0.97],肥厚型心肌病0.92 [95% CI,0.90 - 0.94],主动脉瓣狭窄LVH 0.90 [95% CI,0.88 - 0.92],高血压性LVH 0.76 [95% CI,0.76 - 0.77],其他LVH 0.69 [95% CI 0.68 - 0.71]。单导联模型也能很好地区分LVH病因。

结论

基于人工智能的ECG模型有利于LVH的检测和分类,且优于基于临床ECG的规则。

相似文献

8
Artificial Intelligence Interpretation of the Electrocardiogram: A State-of-the-Art Review.人工智能解读心电图:最新综述
Curr Cardiol Rep. 2024 Jun;26(6):561-580. doi: 10.1007/s11886-024-02062-1. Epub 2024 May 16.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验