Suppr超能文献

利用人工神经网络增强电动汽车中双馈感应电机的直接转矩控制

Enhancing direct torque control of doubly fed induction motor in electric vehicle using artificial neural networks.

作者信息

Chantoufi Ahmed, Derouich Aziz, Mahfoud Said, El Ouanjli Najib, El Idrissi Abderrahman, Hussien Shimaa A, Mosaad Mohamed I

机构信息

Industrial Technologies and Services Laboratory, Higher School of Technology, Sidi Mohamed Ben Abdellah University, Fez, Morocco.

Polydisciplinary Laboratory of Sciences, Technologies, and Societies, Higher School of Technology, Sultan Moulay Slimane University, Khenifra, 54000, Morocco.

出版信息

Sci Rep. 2025 Sep 1;15(1):32094. doi: 10.1038/s41598-025-13362-z.

Abstract

Electric vehicles (EVs) represent clean transportation solutions that play a pivotal role in the energy transition. By contributing to the reduction of greenhouse gas emissions, they pave the way for a more sustainable future. However, to ensure the full effectiveness of this transition, EV propulsion systems must meet modern demands for performance and efficiency. These systems must not only be robust but also capable of delivering high performance. In this context, Direct Torque Control (DTC), while widely used, has certain limitations. Specifically, it generates significant torque ripples and sometimes exhibits insufficient dynamic response to load variations. To address these issues, this work proposes an intelligent strategy referred to as ANN-DTC, which replaces hysteresis comparators and the switching table with regulators based on artificial neural networks. Simulations conducted in Matlab/Simulink demonstrate that ANN-DTC reduces torque ripples from 201.46 Nm to 87.31 Nm, an improvement of 56.66%, and eliminates the speed overshoots observed with conventional DTC. These results highlight the effectiveness of this approach in enhancing the dynamic response and adaptability of EV propulsion systems.

摘要

电动汽车(EVs)代表着清洁的交通解决方案,在能源转型中发挥着关键作用。通过有助于减少温室气体排放,它们为更可持续的未来铺平了道路。然而,为确保这一转型的全面有效性,电动汽车推进系统必须满足现代对性能和效率的要求。这些系统不仅必须坚固耐用,而且还能够提供高性能。在这种背景下,直接转矩控制(DTC)虽然被广泛使用,但存在一定局限性。具体而言,它会产生显著的转矩脉动,并且有时对负载变化的动态响应不足。为解决这些问题,这项工作提出了一种称为ANN-DTC的智能策略,该策略用基于人工神经网络的调节器取代了滞环比较器和开关表。在Matlab/Simulink中进行的仿真表明,ANN-DTC将转矩脉动从201.46 Nm降低到87.31 Nm,改善了56.66%,并消除了传统DTC中观察到的速度超调。这些结果突出了这种方法在增强电动汽车推进系统的动态响应和适应性方面的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7846/12402273/f46b71e3cf18/41598_2025_13362_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验