Ali Aqib, Li Xinde, Mashwani Wali Khan, Abiad Mohammad, Tenruh Mahmut
Key Laboratory of Measurement and Control of CSE, School of Automation, Southeast University, Nanjing, 210096, China.
Southeast University Shenzhen Research Institute, Shenzhen, 518063, China.
Sci Rep. 2025 Sep 1;15(1):32198. doi: 10.1038/s41598-025-16825-5.
This study aims to highlight the effectiveness of computer vision (CV) techniques in classifying brain tumors using a comprehensive dataset consisting of computed tomography (CT) scans. The proposed framework comprises six types of brain tumors, including benign tumors (Meningioma, Schwannoma, and Neurofibromatosis) and malignant tumors (Glioma, Chondrosarcoma, and Chordoma). The acquired images underwent pre-processing steps to enhance the dataset's quality, including noise reduction through median and Gaussian filters and region of interest (ROIs) extraction using an automated binary threshold-based fuzzy c-means segmentation (ABTFCS) approach. A total of 900 CT-scan images were utilized, 150 images per tumor class, each with a size of 512 × 512 pixels, and 4 ROIs taken per image, so the total dataset size is 3600 (900 × 4) attributes. After pre-processing, the dataset was further analysed to extract 135 statistical multi-features for each ROI. An optimized set of 12 statistical multi-features was selected to identify the most relevant features using a feature selection technique based on correlation. For the classification stage, the optimized statistical multi-feature dataset was evaluated using five computer vision classifiers: multilayer perceptron (MLP), BayesNet, PART, random tree, and randomizable filtered classifier, employing a 10-fold cross-validation method. Among these classifiers, MLP with fine-tuned hyperparameters achieved a promising accuracy rate of 97.83%.
本研究旨在突出计算机视觉(CV)技术在使用由计算机断层扫描(CT)扫描组成的综合数据集对脑肿瘤进行分类方面的有效性。所提出的框架包含六种类型的脑肿瘤,包括良性肿瘤(脑膜瘤、神经鞘瘤和神经纤维瘤病)和恶性肿瘤(胶质瘤、软骨肉瘤和脊索瘤)。获取的图像经过预处理步骤以提高数据集的质量,包括通过中值和高斯滤波器进行降噪以及使用基于自动二进制阈值的模糊c均值分割(ABTFCS)方法提取感兴趣区域(ROI)。总共使用了900张CT扫描图像,每个肿瘤类别150张图像,每张图像大小为512×512像素,且每张图像提取4个ROI,因此总数据集大小为3600(900×4)个属性。预处理后,对数据集进一步分析,为每个ROI提取135个统计多特征。使用基于相关性的特征选择技术选择了一组优化的12个统计多特征,以识别最相关的特征。在分类阶段,使用10折交叉验证方法,使用五个计算机视觉分类器对优化后的统计多特征数据集进行评估:多层感知器(MLP)、贝叶斯网络、PART、随机树和可随机化过滤分类器。在这些分类器中,超参数经过微调的MLP实现了97.83%的可观准确率。