Suppr超能文献

通过人工智能创新解决方案减轻抗菌药物耐药性(MARISA):一项改良的詹姆斯·林德联盟分析

Mitigating antimicrobial resistance by innovative solutions in AI (MARISA): a modified James Lind Alliance analysis.

作者信息

Waldock William J, Thould Hannah, Chindelevitch Leonid, Croucher Nicholas J, de la Fuente César, Collins James J, Ashrafian Hutan, Darzi Ara

机构信息

Institute of Global Health Innovation, Imperial College London, London, UK.

MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK.

出版信息

NPJ Antimicrob Resist. 2025 Sep 1;3(1):75. doi: 10.1038/s44259-025-00150-y.

Abstract

Antimicrobial resistance (AMR) is a critical global health threat and artificial intelligence (AI) presents new opportunities for our response. However, research priorities at the AI-AMR intersection remain undefined. This study aimed to identify and prioritise key areas for future investigation. Using a modified James Lind Alliance approach, we conducted semi-structured interviews with eight experts in AI and AMR between February and June 2024. Analysis of 338 coded responses revealed 44 distinct themes. Major barriers included fragmented data access, integration challenges and economic disincentives. The top ten priorities identified were: Combination Therapy, Novel Therapeutics, Data Acquisition, AMR Public Health Policy, Prioritisation, Economic Resource Allocation, Diagnostics, Modelling Microbial Evolution, AMR Prediction and Surveillance. A notable limitation was the underrepresentation of data from high-burden regions, limiting the generalisability of findings. To address these gaps, we propose the novel BARDI framework: Brokered Data-sharing, AI-driven Modelling, Rapid Diagnostics, Drug Discovery and Integrated Economic Prevention.

摘要

抗菌药物耐药性(AMR)是对全球健康的一项重大威胁,而人工智能(AI)为应对这一问题带来了新机遇。然而,人工智能与抗菌药物耐药性交叉领域的研究重点仍不明确。本研究旨在确定未来调查的关键领域并对其进行优先排序。我们采用改良的詹姆斯·林德联盟方法,在2024年2月至6月期间对八位人工智能和抗菌药物耐药性领域的专家进行了半结构化访谈。对338条编码回复的分析揭示了44个不同的主题。主要障碍包括数据访问分散、整合挑战和经济激励不足。确定的十大优先事项为:联合疗法、新型疗法、数据采集、抗菌药物耐药性公共卫生政策、优先排序、经济资源分配、诊断、微生物进化建模、抗菌药物耐药性预测和监测。一个显著的局限性是高负担地区的数据代表性不足,限制了研究结果的普遍性。为弥补这些差距,我们提出了新颖的BARDI框架:中介数据共享、人工智能驱动的建模、快速诊断、药物发现和综合经济预防。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cca9/12402447/1b0fe9e8174e/44259_2025_150_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验